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Abstract. Let G be a connected graph that is simple, non-trivial, and finite. Its vertices have
the coloring N. Rainbow dynamic coloring is a dynamic coloring of a graph that requires a
minimum number of colors such that each pair of vertices is connected by at least one path
whose internal vertices have different colors. In this work, we determine the rainbow dynamic
coloring of corona product graphs such as K2,3 with a path graph, K2,3 with a complete graph, a
path with K2,3 graph, and K2,3 with wheel graph.
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1. Introduction

Graph theory in mathematics is the study of graphs, which are mathematical struc-
tures that represent pairwise connections between objects. A graph G consists of a ver-
tex set V (G) and an edge set E(G). The name ”graph coloring” comes from the map-
coloring system. Vertices and edges are given labels. A particular instance of graph
labeling in graph theory is graph coloring, which is the process of assigning labels,
traditionally referred to as ”colors” to graph elements. Within a graph, no two neigh-
boring vertices, neighboring edges, or neighboring regions have the same color scheme.
In addition to its theoretical issues, graph coloring has several practical applications in
clustering, data mining, image capturing, networking, image segmentation, resource al-
location, process scheduling, etc. In 2001 [1] Bruce Montgomery presented dynamic
coloring, a rather novel idea in vertex coloring. A dynamic graph coloring is a proper
coloring of the set of vertex such that each vertex of degree at least two of its neighbors
receives at least two different colors. In 2010, [2] Krivelevich and Yuster presented the
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idea of rainbow vertex coloring. A rainbow vertex connection number, rvc(G) of a con-
nected graph, is the minimum number of colors required to color its vertices. Every pair
of vertices is connected by at least one path whose internal vertices have distinct colors.
A rainbow dynamic coloring of a graph is not just a theoretical concept but a practical
one. It is a dynamic coloring, and a minimum number of colors is required such that
every pair of vertices is connected by at least one path whose internal vertices have dif-
ferent colors. The minimum k for which k-vertex coloring exists is called the rainbow
dynamic coloring of G, denoted by rdyc(G) [6], [7], [8], [11], [12].

1.1. Definition

Consider two graphs, A and B. One copy of A and |V (A)| copies of B are taken,
and each vertex of a copy of B is joined to a corresponding vertex of A, to give the
corona product of A and B, represented as A ◦B. [3], [9]. Note: a = 1,2,3, ..n where
computation is performed modulo ′a′

2. Results

Proposition 1. rdyc(K2 ◦K2,3) = 3

Theorem 1. Let G be equal to Kn ◦K2,3. Then, rdyc(G) = n for n ≥ 3

Proof. Let V (Kn) = {va : 1 ≤ a ≤ n} and let (K2,3)a be the vertex set of ′a′ copies of
(K2,3) i.e V{(K2,3)a} = {uab : 1 ≤ a ≤ n,1 ≤ b ≤ 5}. Every vertex of Kn is adjacent to
every vertex of a copy of K2,3 according to the definition of the corona product, that is,
for 1≤ a≤ n, the vertex va of V (Kn) is adjacent to the vertices of the set {uab : 1≤ b≤ 5}
in the at h copy of K2,3. Let Q(Kn ◦K2,3) be {Q1 ∪Q2 ∪Q3} where Q1 be the edge set
of Kn, Q2 be the edge set of K2,3 and Q3 = {(eq)a = (va,uab);1 ≤ a ≤ n,1 ≤ q ≤ 5 and
1 ≤ b ≤ 5}. The vertices of Kn ◦K2,3 are assigned a rainbow dynamic coloring in the
following manner.
Assign color a to vertex va of Kn for 1 ≤ a ≤ n and color | a+1 | to vertices of (K2,3)a

for 1 ≤ b ≤ 3 and | a+2 | for 4 ≤ b ≤ 5. This color assignment indicates that

rdyc(Kn ◦K2,3)≤ n (1)

To prove rdyc(Kn ◦K2,3) ≥ n. We assume that rdyc(Kn ◦K2,3) = n− 1. The vertices of
Kn ◦K2,3 must be assigned n− 1 colors for rdyc. We will assign Kn, n− 1 colors. We
observe that at least two neighboring vertices of Kn ◦K2,3 have the same color assigned
to them, and at least one path is not rdyc. This contradicts the assumption. As a result

rdyc(Kn ◦K2,3)≥ n (2)

It is evident from (1) and (2) that rdyc(Kn ◦K2,3) = n
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Figure 1: K4 ◦K2,3

Proposition 2. rdyc(P2 ◦K2,3) = 3

Theorem 2. Let G be equal to Pn ◦K2,3. Then, rdyc(G) = n for n ≥ 3

Proof. Let V (Pn) = {va : 1 ≤ a ≤ n} and let (K2,3)a be the vertex set of ′a′ copies of
(K2,3) i.e V{(K2,3)a} = {uab : 1 ≤ a ≤ n,1 ≤ b ≤ 5}. Every vertex of Pn is adjacent to
every vertex of a copy of K2,3 according to the definition of the corona product, that is,
for 1≤ a≤ n, the vertex va of V (Pn) is adjacent to the vertices of the set {uab : 1≤ b≤ 5}
in the at h copy of K2,3. Let Q(Pn ◦K2,3) be {Q1 ∪Q2 ∪Q3} where Q1 be the edge set
of Pn, Q2 be the edge set of K2,3 and Q3 = {(eq)a = (va,uab);1 ≤ a ≤ n,1 ≤ q ≤ 5 and
1 ≤ b ≤ 5}. The vertices of Pn ◦K2,3 are assigned a rainbow dynamic coloring in the
following manner.
Assign color a to vertex va of Pn for 1 ≤ a ≤ n and color | a+ 1 | to vertices of (K2,3)a

for 1 ≤ b ≤ 3 and | a+2 | for 4 ≤ b ≤ 5. This color assignment indicates that

rdyc(Pn ◦K2,3)≤ n (3)

To prove rdyc(Pn ◦K2,3) ≥ n. We assume that rdyc(Pn ◦K2,3) = n− 1. The vertices of
Pn ◦K2,3 must be assigned n− 1 colors for rdyc. We will assign Pn, n− 1 colors. We
observe that at least two neighboring vertices of Pn ◦K2,3 have the same color assigned
to them and at least one path is not rdyc. This contradicts the assumption. As a result

rdyc(Pn ◦K2,3)≥ n (4)

It is evident from (3) and (4) that rdyc(Pn ◦K2,3) = n
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Figure 2: P4 ◦K2,3

Theorem 3. Let G be equal to K2,3 ◦Pn. Then, rdyc(G) = 5 for n ≥ 2

Proof. Let V (K2,3) = {va : 1 ≤ a ≤ 5} and let (Pn)a be the vertex set of ′a′ copies
of (Pn) i.e V{(Pn)a} = {uab : 1 ≤ a ≤ 5,1 ≤ b ≤ n}. Every vertex of K2,3 is adjacent to
every vertex of a copy of Pn according to the definition of the corona product, that is, for
1 ≤ a ≤ 5, the vertex va of V (K2,3) is adjacent to the vertices of the set {uab : 1 ≤ b ≤ n}
in the at h copy of Pn. Let Q(K2,3 ◦Pn) be {Q1 ∪Q2 ∪Q3} where Q1 be the edge set of
K2,3, Q2 be the edge set of Pn and Q3 = {(eq)a = (va,uab);1 ≤ a ≤ 5,1 ≤ q ≤ n and
1 ≤ b ≤ n}. The vertices of K2,3 ◦Pn are assigned a rainbow dynamic coloring in the
following manner.
Assign color a to vertex K2,3 for 1 ≤ a ≤ 5 and color {| a+ 1 |, | a+ 2 |} and the same
pattern is followed till the end vertex to vertices of (Pn)a. This color assignment indicates
that

rdyc(K2,3 ◦Pn)≤ 5 (5)

To prove rdyc(K2,3 ◦ Pn) ≥ 5. We assume that rdyc(K2,3 ◦ Pn) = 4. The vertices of
K2,3 ◦Pn must be assigned 4 colors for rdyc. We will assign K2,3, 4 colors. We observe
that at least one path of K2,3 ◦Pn is not rdyc. This contradicts the assumption. As a result

rdyc(K2,3 ◦Pn)≥ 5 (6)

It is evident from (5) and (6) that rdyc(K2,3 ◦Pn) = 5

Figure 3: K2,3 ◦P4
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Theorem 4. Let G be equal to K2,3 ◦W1,n. Then, rdyc(G) = 5 for n ≥ 2

Proof. Let V (K2,3) = {va : 1 ≤ a ≤ 5} and let (W1,n)a be the set of vertices of ′a′

copies of (W1,n). (W1,n)a contains the n-cycle, (Cn)a = {ua1,ua2,ua3,ua4, ..
....,ua(n+1)} and an additional vertex ua0 that connects to each of (Cn)a of (W1,n)a. Every
vertex of K2,3 is adjacent to every vertex of a copy of W1,n according to the definition
of the corona product, that is, for 1 ≤ a ≤ 5, the vertex va of V (K2,3) is adjacent to
the vertices of the set {uab : 1 ≤ b ≤ n} in the at h copy of W1,n. Let Q(K2,3 ◦W1,n)
be {Q1 ∪Q2 ∪Q3} where Q1 be the edge set of K2,3, Q2 be the edge set of W1,n and
Q3 = {(eq)a = (va,uab);1 ≤ a ≤ 5,1 ≤ q ≤ n + 1 and 0 ≤ b ≤ n}. The vertices of
K2,3 ◦W1,n are assigned a rainbow dynamic coloring in the following manner.
Case 1: n is even, Assign color a to vertex K2,3 for 1 ≤ a ≤ 5, color | a+1 | to the vertex
ua0 of (W1,n)a and color {| a+ 2 |, | a+ 3 |} the same pattern is followed till the end
vertex to (Cn)a of (W1,n)a.
Case 2: n is odd, Assign color a to vertex K2,3 for 1 ≤ a ≤ 5, color | a+1 | to the vertex
ua0 of (W1,n)a and color {| a+ 2 |, | a+ 3 |} the same pattern is followed with the end
vertex as | a+4 | to (Cn)a of (W1,n)a. This color assignment indicates that

rdyc(K2,3 ◦W1,n)≤ 5 (7)

To prove rdyc(K2,3 ◦W1,n) ≥ 5. We assume that rdyc(K2,3 ◦W1,n) = 4. The vertices of
K2,3 ◦W1,n must be assigned 4 colors for rdyc. We will assign K2,3, 4 colors. We observe
that at least one path of K2,3 ◦W1,n is not rdyc. This contradicts the assumption. As a
result

rdyc(K2,3 ◦W1,n)≥ 5 (8)

It is evident from (7) and (8) that rdyc(K2,3 ◦W1,n) = 5

Figure 4: K2,3 ◦W1,3
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3. Discussions

From Proposition 1,2 it is observed that the rdyc(K2 ◦K2,3)=3=rdyc(P2 ◦K2,3) for
n = 2 as the P2 and K2 graphs are the same. The results of Theorem 3,4 are obtained for
n ≥ 2 and rdyc(K2,3 ◦W1,n) = 5 = rdyc(K2,3 ◦Pn) for n ≥ 2.

4. Conclusions

In this paper, we explored the concept of rainbow dynamic coloring for several
corona product graphs, including combinations of (Kn ◦ k2,3), (Pn ◦ k2,3), (K2,3 ◦Pn) and
(K2,3 ◦W1,n). We also describe the general problems that motivated this research. Today,
computer networks in which certain links connect nodes are widespread. This network
creates a graph. Graphs are used in computer networks to create a network of nodes
and facilitate efficient packet routing. Some examples include finding the shortest routes
between nodes, analyzing network traffic to identify the fastest root, and determining the
most economical route. [4], [5], [10], [13], [14],
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