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Lorentz boundedness characterization of commutators of
maximal operators on spaces of homogeneous type
Vagif S. Guliyev*

Abstract. We study the Lorentz boundedness properties of the maximal commutator operator
Mb on the space of homogeneous type and relate this property to spaces of bounded mean os-
cillations. We also study the Lorentz boundedness properties of the commutators of the max-
imal operator [b,M] and the commutators of the sharp maximal operator [b,M♯] on the space
of homogeneous type and relate this property for certain subclasses of spaces of bounded mean
oscillations.
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1. Introduction

The main goal of this paper is to study the Lorentz boundedness of the maxi-
mal commutator operator Mb, the commutators of the maximal operator [b,M] and the
commutators of the sharp maximal operator [b,M♯] on spaces (X ,d,µ) of homogeneous
type.

To extend traditional Euclidean space and build a general basic structure for real har-
monic analysis, Coifman and Weiss introduced the concept of spaces of homogeneous
type [6].

Let X = (X ,d,µ) be a space of homogeneous type, i.e. X is a topological space
endowed with a quasi-distance d and a positive measure µ such that

d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y,

d(x,y) = d(y,x),

d(x,y)≤ K1(d(x,z)+d(z,y)), (1)
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the balls B(x,r) = {y∈ X : d(x,y)< r}, r > 0, form a basis of neighborhoods of the point
x, µ is defined on a σ -algebra of subsets of X which contains the balls, and

0 < µ(B(x,2r))≤ K2 µ(B(x,r))< ı, (2)

where Ki ≥ 1(i = 1,2) are constants independent of x,y,z ∈ X and r > 0. As usual, the
dilation of a ball B = B(x,r) will be denoted by λB = B(x,λ r) for every λ > 0.

In the sequel, we always assume that µ(X) = ı, the space of compactly supported
continuous function is dense in L1(X ,µ) and that X is Q-homogeneous (Q > 0), i.e.

K−1
3 rQ ≤ µ(B(x,r))≤ K3rQ, (3)

where K3 ≥ 1 is a constant independent of x and r. The n-dimensional Euclidean space
is n-homogeneous.

For f ∈ L1
loc(), the uncentered maximal operator M is defined by

M f (x) = sup
B∋x

µ(B)−1
∫

B
| f (y)− fB|dµ(y)

and the sharp maximal function of Fefferman and Stein M♯ f is defined by

M♯ f (x) = sup
B∋x

µ(B)−1
∫

B
| f (y)|dµ(y)

where the supremum is taken over all balls B ⊂ X containing x ∈ X , B is its complement
and B denotes the µ measure of B. For a fixed q ∈ (0,1), any suitable function h and
x ∈ X , let M♯

qh(x) =
(
M♯

(
|h|q

)
(x)

)1/q and Mqh(x) =
(
M
(
|h|q

)
(x)

)1/q.
The maximal commutator generated by the operator M and b ∈ L1

loc() is defined by

Mb f (x) = sup
B∋x

µ(B)−1
∫

B
|b(x)−b(y)|| f (y)|dµ(y).

The commutators generated by the operators M, M♯ and a suitable function b are
defined by

[b,M] f (x) = b(x)M f (x)−M(b f )(x)

and
[b,M♯] f (x) = b(x)M♯ f (x)−M♯(b f )(x).

Obviously, the operators Mb and [b,M] essentially differ from each other since Mb is
positive and sublinear and [b,M] is neither positive nor sublinear. The operators M, Mb,
[b,M] and [b,M♯] play an important role in real and harmonic analysis and applications
(see, for instance [2, 8, 17, 18, 20, 22]).
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The commutator estimates have many important applications, for example, in study-
ing the regularity and boundedness of solutions of elliptic, parabolic and ultraparabolic
partial differential equations of second order, and in characterizing certain function
spaces (see, for instance [5, 9]). The boundedness of the Hardy-Littlewood maximal
operator M on Lp() is one of the most fundamental results in harmonic analysis. It
has been extended to a range of other function spaces, and to many variations of the
standard maximal operator. In particular, one can study commutators of M with BMO
functions b. These turn out to be Lp bounded for 1 < p < ∞ if and only if b ∈ BMO and
b− ≡−min{b,0} ∈ L∞() [2]. This is useful, for instance, when studying the product of
an H1 function with a BMO function [4]. Note that, the boundedness of the operator Mb
on Lp spaces was proved by Garcia-Cuerva et al. [8].

The commutator estimates play an important role in studying the regularity of so-
lutions of elliptic, parabolic and ultraparabolic partial differential equations of second
order, and their boundedness can be used to characterize certain function spaces (see,
for instance [5, 13, 14, 15, 16, 19]).

In [1, 11] were obtained for the boundedness of the maximal commutator operator
Mb and commutators of maximal operator [b,M] on the Lorentz spaces Lp,q(), see also
[12].

In this paper we obtain necessary and sufficient conditions for the boundedness of the
maximal commutator operator Mb, the commutators of the maximal operator [b,M] and
the commutators of the sharp maximal operator [b,M♯] on the Lorentz spaces Lp,q(X).
We give some new characterizations for certain subclasses of BMO(X).

The structure of the paper is as follows. In Section 2 we give some definitions and
auxiliary results. In Section 3 we obtain necessary and sufficient conditions for the
boundedness of the maximal commutator Mb on Lp,q(X) Lorentz spaces. In Section 4
we give necessary and sufficient conditions for the boundedness of the commutators of
the maximal operator [b,M] and the commutators of the sharp maximal operator [b,M♯]
on Lp,q(X) spaces.

By A ≲ B we mean that A ≤ CB with some positive constant C independent of ap-
propriate quantities. If A ≲ B and B ≲ A, we write A ≈ B and say that A and B are
equivalent.

2. Definition and some basic properties

We start with the definition of Lorentz spaces. Lorentz spaces are introduced by
Lorentz in the 1950. These spaces are Banach spaces and generalizations of the more
familiar Lp spaces, also they appear to be useful in the general interpolation theory.

Suppose that f is a measurable function on X , then we define

f ∗(t) = inf{s > 0 : d f (s)≤ t},
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where

d f (s) := µ({x ∈ X : | f (x)|> s}), ∀s > 0.

Definition 1. [3] The Lorentz space Lp,q ≡ Lp,q(X), 0 < p,q ≤ ∞ is the collection of all
measurable functions f on X such the quantity

∥ f∥Lp,q(X) := ∥t
1
p−

1
q f ∗(t)∥Lq(0,∞) (4)

is finite. Clearly Lp,p(X)≡ Lp(X) and Lp,ı(X)≡WLp(X). The functional ∥ ·∥Lp,q(X) is a
norm if and only if either 1 ≤ q ≤ p or p = q = ∞.

Lemma 1. [7,Proposition 2.11] Let 0 < q1,q2 < ∞, and 0 < q1,q2 < ∞. Suppose that
f ∈ Lq1,r1(X) and g ∈ Lq2,r2(X). Then

∥ f g∥Lq,r(X) ≤ 2∥ f∥Lq1 ,r1 (X) ∥g∥Lq2 ,r2 (X)

where 1
q = 1

q1
+ 1

q2
, and 1

r =
1
r1
+ 1

r2
.

The following result completely characterizes the boundedness of M on Lorentz
spaces.

Lemma 2. [7,T heorem 3.1] Let 1 ≤ p,q ≤ ∞.
(i) If 1 < p ≤ ∞, then the operator M is bounded on the Lorentz spaces Lp,q(X).
(ii) If p = 1, then the operator M is bounded on the Lorentz spaces L1,q(X) to

WL1(X).

3. Lp,q-boundedness of the maximal commutator operator Mb

In this section we find necessary and sufficient conditions for the boundedness of the
maximal commutator Mb on Lp,q(X) Lorentz spaces.

Definition 2. We define the space BMO(X) as the set of all locally integrable functions
f with finite norm

∥ f∥∗ = sup
x∈X ,t>0

µ(B(x, t))−1
∫

B(x,t)
| f (y)− fB(x,t)|dµ(y)< ∞,

where fB(x,t) = µ(B(x,r))−1 ∫
B(x,t) f (y)dµ(y).

Lemma 3. [17,Lemma 1] If b ∈ BMO(X), then for any q ∈ (0,1), there exists a positive
constant C such that

M♯
q
(
Mb f

)
(x)≤C∥b∥∗M

(
M f

)
(x) (5)

for every x ∈ X and for all f ∈ L1
loc(X).
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Theorem 1. Let p,q ∈ (1,∞). The following assertions are equivalent:
(i) b ∈ BMO(X).
(ii) The operator Mb is bounded on Lp,q(X).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−bB
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
≤C. (6)

(iv) There exist a constant C > 0 such that

sup
B

1
µ(B)

∥∥(b(·)−bB
)
χB

∥∥
L1(X)

≤C. (7)

Proof. (i)⇒ (ii). Suppose that b ∈ BMO(X). Combining Lemmas 2 and 3, we get

∥Mb f∥Lp,q(X) ≲ ∥M♯
q
(
Mb f

)
∥Lp,q(X) ≲ ∥b∥∗ ∥M

(
M f

)
∥Lp,q(X)

≲ ∥b∥∗∥M f∥Lp,q(X)

≲ ∥b∥∗∥ f∥Lp,q(X).

(ii)⇒ (i). Assume that Mb is bounded on Lp,q(X). Let B = B(x,r) be a fixed ball.
We consider f = χB. It is easy to compute that

∥χB∥Lp,q(X) ≈ r
Q
p . (8)

On the other hand, for all x ∈ B we have∣∣b(x)−bB
∣∣≤ 1

µ(B)

∫
B
|b(x)−b(y)|dµ(y)

=
1

µ(B)

∫
B
|b(x)−b(y)|χB(y)dµ(y)

≤ Mb(χB)(x).

Since Mb is bounded on Lp,q(X), then by (8) we obtain

∥
(
b−bB

)
χB∥Lp,q(X)

∥χB∥Lp,q(X)
≤

∥Mb(χB)∥Lp,q(X)

∥χB∥Lp,q(X)
≲

∥χB∥Lp,q(X)

∥χB∥Lp,q(X)
= 1, (9)

which implies that (6) holds since the ball B ⊂ X is arbitrary.
(iii) ⇒ (iv). Assume that (6) holds, we will prove (7). For any fixed ball B, by

Lemma 1, inequalities (6) and (8), it is easy to see

1
µ(B)

∫
B
|b(x)−b(y)|dµ(y)≲

1
µ(B)

∥
(
b−bB

)
χB∥Lp,q(X) ∥χB∥Lp′,r′ (X)
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≲
∥
(
b−bB

)
χB∥Lp,q(X)

∥χB∥Lp,q(X)

≲ 1.

(iv)⇒ (i). For any fixed ball B, we have

1
µ(B)

∫
B
|b(x)−bB|dµ(y) =

∥
(
b−bB

)
χB∥L1(X)

µ(B)

≤ sup
B

∥
(
b−bB

)
χB∥L1(X)

µ(B)

≲ 1,

which implies that b ∈ BMO(X). Thus the proof of the theorem is completed.

4. Lp,q-boundedness of the commutator of maximal operator [b,M]

In this section we obtain necessary and sufficient conditions for the boundedness
of the commutator of maximal operator [b,M] on Lp,q(X) Lorentz spaces.

For a function b defined on X , we denote

b−(x) :=

{
0 , if b(x)≥ 0
|b(x)|, if b(x)< 0

and b+(x) := |b(x)|−b−(x). Obviously, b+(x)−b−(x) = b(x).
The following relations between [b,M] and Mb are valid :
Let b be any non-negative locally integrable function. Then for all f ∈ L1

loc(X) and
x ∈ X the following inequality is valid∣∣[b,M] f (x)

∣∣= ∣∣b(x)M f (x)−M(b f )(x)
∣∣

=
∣∣M(b(x) f )(x)−M(b f )(x)

∣∣≤ M(|b(x)−b| f )(x) = Mb f (x).

If b is any locally integrable function on X , then

|[b,M] f (x)| ≤ Mb f (x)+2b−(x)M f (x), x ∈ X (10)

holds for all f ∈ L1
loc(X) (see, for example [10, 22]).

Denote by Mb f the local maximal function of f :

MB f (x) := sup
B′∋x:B′⊂B

1
µ(B′)

∫
B′
| f (y)|dµ(y), x ∈ X .

Applying Theorem 1, we obtain the following result.
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Theorem 2. Let p,q ∈ (1,∞). The following assertions are equivalent:
(i) b ∈ BMO(X) and b− ∈ L∞(X).
(ii) The operator [b,M] is bounded on Lp,q(X).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−MB(b)(·)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
≤C. (11)

(iv) There exist a constant C > 0 such that

sup
B

1
µ(B)

∥∥(b(·)−MB(b)(·)
)
χB

∥∥
L1(X)

≤C. (12)

Proof. (i)⇒ (ii). Suppose that b ∈ BMO(X) and b− ∈ L∞(X). Combining Lemma
2 and Theorem 1, and inequality (10), we get

∥[b,M] f∥Lp,q(X) ≤ ∥Mb f +2b− M f∥Lp,q(X)

≤ ∥Mb f∥Lp,q(X)+∥b−∥L∞ ∥M f∥Lp,q(X)

≲
(
∥b∥∗+∥b−∥L∞

)
∥ f∥Lp,q(X).

Thus, we obtain that [b,M] is bounded on Lp,q(X).
(ii) ⇒ (iii). Assume that [b,M] is bounded on Lp,q(X). Let B = B(x,r) be a fixed

ball. Since
M(bχB)χB = MB(b) and M(χB)χB = χB,

we have

|MB(b)−bχB|= |M(bχB)χB −bM(χB)χB|
≤ |M(bχB)−bM(χB)|= |[b,M]χB|.

Hence
∥MB(b)−bχB∥Lp,q(X) ≤ ∥[b,M]χB∥Lp,q(X).

Thus we get

∥
(
b−MB(b)

)
χB∥Lp,q(X)

∥χB∥Lp,q(X)
≤

∥[b,M](χB)∥Lp,q(X)

∥χB∥Lp,q(X)
≲

∥χB∥Lp,q(X)

∥χB∥Lp,q(X)
= 1,

which deduces that (iii).
(iii) ⇒ (iv). Assume that (11) holds, then for any fixed ball B, by Lemma 1, we

conclude that

1
µ(B)

∫
B
|b(x)−MB(b)(x)|dµ(x)≲

1
µ(B)

∥
(
b−MB(b)

)
χB∥Lp,q(X) ∥χB∥Lp′,q′ (X)
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≲
∥
(
b−MB(b)

)
χB∥Lp,q(X)

∥χB∥Lp,q(X)

≲ 1.

(iv)⇒ (i). Assume that (12) holds, we will prove b ∈ BMO(X) and b− ∈ L∞(X).
Denote by

E := {x ∈ B : b(x)≤ bB}, F := {x ∈ B : b(x)> bB}.

Since ∫
E
|b(t)−bB|dµ(y) =

∫
F
|b(y)−bB|dµ(y),

in view of the inequality b(x)≤ bB ≤ MB(b), x ∈ E, we get

1
µ(B)

∫
B
|b−bB|=

2
µ(B)

∫
E
|b−bB|

≤ 2
µ(B)

∫
E
|b−MB(b)|

≤ 2
µ(B)

∫
B
|b−MB(b)|≲ c.

Consequently, b ∈ BMO(X). In order to show that b− ∈ L∞(X), note that MB(b) ≥ |b|.
Hence

0 ≤ b− = |b|−b+ ≤ MB(b)−b++b− = MB(b)−b.

Thus
(b−)B ≤ c,

and by the Lebesgue Differentiation theorem we get that

0 ≤ b−(x) = lim
µ(B)→0

1
µ(B)

∫
B

b−(y)dµ(y)≤ c for a.e. x ∈ X .

Thus the proof of the theorem is completed.

Theorem 3. Let p,q ∈ (1,∞). The following assertions are equivalent:
(i) b ∈ BMO(X) and b− ∈ L∞(X).
(ii) The operator [b,M♯] is bounded on Lp,q(X).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
≤C. (13)

(iv) There exist a constant C > 0 such that

sup
B

1
µ(B)

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
L1(X)

≤C. (14)
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Proof. (i)⇒ (ii). Since b∈BMO(X) and b− ∈ L∞(X), then for any locally integrable
function f and a.e. x ∈ X

∣∣[b,M♯] f (x)
∣∣= ∣∣∣sup

B∋x

b(x)
µ(B)

∫
B
| f (y)− fB|dµ(y)

− sup
B∋x

1
µ(B)

∫
B
|b(y) f (y)− (b f )B|dµ(y)

∣∣∣
≤ sup

B∋x

1
µ(B)

∫
B

∣∣(b(y)−b(x)) f (y)+b(x) fB − (b f )B
∣∣dµ(y)

≤ sup
B∋x

1
µ(B)

∫
B

(
|b(y)−b(x)| | f (y)|+

∣∣b(x) fB − (b f )B
∣∣)dµ(y)

≲ Mb f (x)+ sup
B∋x

∣∣∣ b(x)
µ(B)

∫
B

f (z)dµ(z)− 1
µ(B)

∫
B

b(z) f (z)dµ(z)
∣∣∣

≲ Mb f (x)+ sup
B∋x

1
µ(B)

∫
B
|b(x)−b(z)|| f (z)|dµ(z)

≲ Mb f (x).

Then, it follows from Theorem 1 that [b,M♯] is bounded on Lp,q(X).

(ii)⇒ (iii). Assume [b,M♯] is bounded on Lp,q(X), we will prove (13). For any fixed
ball B, we have (see [2, page 3333] or [22, page 1383] for details)

M♯
(
χB

)
(x) =

1
2

for all x ∈ B.

Then, for all x ∈ B,

b(x)−2M♯
(
b χB

)
(x) = 2

(b(x)
2

−M♯
(
b χB

)
(x)

)
= 2

(
b(x)M♯

(
χB

)
(x)−M♯

(
b χB

)
(x)

)
= [b,M♯]

(
χB

)
(x).

Since [b,M♯] is bounded on Lp,q(X), then by applying (8), we have∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
= 2

∥∥[b,M♯]
(
χB

)∥∥
Lp,q(X)

∥χB∥Lp,q(X)

≲
∥χB∥Lp,q(X)

∥χB∥Lp,q(X)
≲ 1.

which implies (13).
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(iii)⇒ (iv). Assume (13) holds, we will prove (14). For any fixed ball B, combining
Lemma 1 with (13) deduces that

1
µ(B)

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
L1(X)

≤

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
≤C ,

which implies (14) holds since the constant C is independent of B.
(iv)⇒ (i). We first prove b ∈ BMO(X). For any fixed ball B, we have (see (2) in [2]

for details) ∣∣bB
∣∣≤ 2M♯

(
b χB

)
(x), for any x ∈ B. (15)

For any ball B, let E = {y ∈ B : b(y) ≤ bB} and F = {y ∈ B : b(y) > bB}. The
following equality is true (see [2, page 3331]):∫

E
|b(y)−bB|dµ(y) =

∫
F
|b(y)−bB|dµ(y). (16)

Since b(y)≤ bB ≤ |bB| ≤ 2M♯
(
b χB

)
(y) for any y ∈ E, we obtain

|b(y)−bB| ≤
∣∣b(y)−2M♯

(
b χB

)
(y)

∣∣, y ∈ E. (17)

Then from (16) and (17) we have

1
µ(B)

∫
B
|b(y)−bB|dµ(y) =

2
µ(B)

∫
E
|b(y)−bB|dµ(y)

≤ 2
µ(B)

∫
E

∣∣b(y)−2M♯
(
b χB

)
(y)

∣∣dµ(y)

≤ 2
µ(B)

∫
B

∣∣b(y)−2M♯
(
b χB

)
(y)

∣∣dµ(y).

Applying from (14) we get b ∈ BMO(X).
In order to show that b− ∈ L∞(X), note that by (15) for x ∈ B

∣∣bB
∣∣ ≤ 2M♯

(
b χB

)
.

Hence ∣∣bB
∣∣−b++b− =

∣∣bB
∣∣−b(x) = 2M♯

(
b χB

)
(x)−b(x).

Therefore ∣∣bB
∣∣− 1

µ(B)

∫
B

b+(x)dx+
1

µ(B)

∫
B

b−(x)dx

=
1

µ(B)

∫
B

(∣∣bB
∣∣−b+(x)+b−(x)

)
dx
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≤ 1
µ(B)

∫
B

(
2M♯

(
b χB

)
(x)−b(x)

)
dx

≤ 1
µ(B)

∫
B

∣∣b(x)−2M♯
(
b χB

)
(x)

∣∣dx. (18)

Then from Lemma 1 and (8) we get

1
µ(B)

∫
B

∣∣b(x)−2M♯
(
b χB

)
(x)

∣∣dx

1
µ(B)

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp′,q′ (X)

≤

∥∥(b(·)−2M♯(b χB)
)
χB

∥∥
Lp,q(X)

∥χB∥Lp,q(X)
≤C , (19)

From (18) and (19) we obtain∣∣bB
∣∣− 1

µ(B)

∫
B

b+(x)dx+
1

µ(B)

∫
B

b−(x)dx ≤C.

By the Lebesgue differentiation theorem we get that

2|b−(x)|= 2b−(x) = |b(x)|−b+(x)−b−(x)≤C.

This implies that b− ∈ L∞().
Thus the proof of the Theorem 3 is completed.
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