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Abstract. This paper introduces the Square Transformed Half-Normal Distribution (STHND), a
new continuous distribution from the half-normal distribution through a square-root transforma-
tion. Key statistical properties—such as the PDF, CDF, quantile function, moments, and hazard
rate are calculated in closed form. Compared to earlier half-normal extensions, the STHND has
a poorer compromise of flexibility and simplicity. Monte Carlo simulations and applications to
real and simulated datasets demonstrate its superior fit over five alternative distributions, based
on AIC, BIC, CAIC, and HQIC.

Key Words and Phrases: Square transformation, Half-normal distribution, Probability, Statis-
tics, Reliability analysis

2010 Mathematics Subject Classifications: 60E05, 62E10, 62N02.

1. Introduction

Probability distributions play a central role in statistical modeling, particularly in
reliability theory, survival analysis, engineering, and biological sciences. Among these,
the half-normal (HN) distribution has been widely used due to its simplicity and appli-
cability to modeling lifetime data with non-negative support and symmetric decay from
the origin [3, 7]. Despite its mathematical tractability, the standard HN distribution often
lacks sufficient flexibility in modeling real-world datasets that exhibit skewness, kurto-
sis, or varying hazard shapes.

To address this limitation, several generalizations and extensions of the HN distri-
bution have been proposed. These include the beta half-normal, Kumaraswamy half-
normal, and generalized half-normal distributions, which introduce shape parameters to
control tail behavior or modify the hazard function [3, 4]. However, many of these exten-
sions result in complicated forms of the probability density function (PDF) or cumulative

∗Corresponding author.

http://www.journalcam.com 109 © 2010 jcam All rights reserved.



110 Fatma Zohra Bousseba, Amine Sakri

distribution function (CDF), making analytical treatment and parameter estimation more
difficult.

Motivation: The motivation behind this work stems from the need to retain the simplic-
ity of the HN distribution while introducing a flexible shape parameter that enhances its
modeling capability. In particular, we aim to construct a two-parameter model that can
accommodate various hazard rate shapes, improve tail flexibility, and maintain analytical
tractability. Inspired by transformation techniques such as those proposed in [8, 9, 10],
we apply a square transformation to the CDF of the half-normal distribution, resulting
in a new and practical model.

Contribution and Novelty: In this paper, we introduce the Square Transformed Half-
Normal Distribution (STHND) as a new lifetime model. The STHND is obtained by
applying a power-of-two transformation to the CDF of the HN distribution, resulting in
a new distribution with a simple yet flexible PDF and CDF. Unlike previous extensions
that rely on complex generators or compounded structures [1, 2], the STHND retains
an analytically tractable form, enabling closed-form expressions for key reliability func-
tions such as the survival function and hazard rate. Moreover, the STHND allows for
different shapes of the hazard function (increasing, decreasing, and unimodal), which is
a significant advantage over the classical HN model.

Compared to other two-parameter extensions of the HN distribution, such as the beta
half-normal or generalized HN models, the STHND stands out by offering:

• A closed-form and differentiable CDF and PDF.

• Simple expressions for reliability measures [13].

• Better goodness-of-fit performance on real datasets, including discovery and eco-
nomic datasets [17, 6].

• A mathematically elegant construction based on deterministic transformation,
similar in spirit to the approaches in [8, 16].

Structure of the Paper: The remainder of the paper is organized as follows. In Sec-
tion 2, we define the STHND and derive its main distributional properties, including
the PDF, CDF, survival function, and hazard rate. Section 3 presents analytical prop-
erties such as moments, moment-generating function, and entropy. In Section 4, we
develop the maximum likelihood estimation method and derive the log-likelihood and
score functions. Section 5 illustrates simulation results using the acceptance-rejection
method and studies the performance of the estimators. Section 6 applies the STHND
to three real-world datasets and compares its performance with other well-known dis-
tributions (including Weibull and Gamma). Finally, Section 7 concludes the paper and
outlines potential directions for future research.
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2. The Base Half-Normal Distribution

The half-normal distribution is a one-sided version of the normal distribution and
is frequently used in applied statistics for modeling non-negative data with asymmetric
behavior [16]. It provides a flexible framework for analyzing continuous, skewed data.
Let X be a random variable following a half-normal distribution with mean zero and
variance γ2. The probability density function (PDF) and cumulative distribution function
(CDF), as given by Bader et al. [4], are:

f (t) =

√
2

γ
√

π
e−t2/(2γ2), t > 0 (1)

F(t) = erf
(

t
γ
√

2

)
, t > 0 (2)

where erf(·) is the Gaussian error function.
This paper proposes a new distribution derived from the half-normal distribution

using the square transformation method introduced by Mahdavi and Kundu [8].

3. Square Transformation of the Half-Normal Distribution

The square transformation (ST) method enhances the flexibility of base distributions
by applying a nonlinear transformation. Given a base distribution with PDF f (t) and
CDF F(t), the transformed PDF and CDF are defined as:

fST(t) = log(2) · f (t) ·2F(t) (3)

FST(t) = 2F(t)−1 (4)

Applying this transformation to the half-normal distribution yields the Square Trans-
formed Half-Normal Distribution (STHND). We define it as follows:

Theorem 1. Let T be a random variable following the STHN distribution. Then the
CDF and PDF are:

FST(t;γ
2) = 2erf

(
t

γ
√

2

)
−1, t > 0 (5)

fST(t;γ) =

√
2ln(2)
γ
√

π
·2erf

(
t

γ
√

2

)
e−t2/(2γ2), t > 0 (6)

These functions are valid since fST(t;γ)≥ 0 and integrates to one over t > 0.
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Theorem 2. For T ∼ STHND(γ), the survival function and hazard function are given
by:

SST(t;γ
2) = 2−2erf

(
t

γ
√

2

)
, t > 0 (7)

hST(t;γ) =

√
2ln(2)
γ
√

π
· 2erf

(
t

γ
√

2

)
e−t2/(2γ2)

2−2erf
(

t
γ
√

2

) , t > 0 (8)

Figure 1: PDF and CDF of the STHND for different values of γ2

Figure 2: Survival and hazard functions of the STHND for various γ2 values

4. Properties of the Square Transformed Half-Normal Distribution

4.1. Quantile Function and Median

Let T be a random variable following the STHN distribution characterized by a lo-
cation parameter of zero and a scale parameter γ . The quantile function Q(u) of T is
defined as:

Q(u) = F−1(u) = F−1
(

2erf(t/γ
√

2)−1
)

(9)
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If u follows the uniform distribution on (0,1), then T ∼ STHND and the p-th quantile
of the STHN distribution is given by:

Tp =
√

2γ · erf−1
(

ln(p+1)
ln(2)

)
(10)

In particular, the median of T is:

T0.5 =
√

2γ · erf−1
(

ln(1.5)
ln(2)

)
≈ 0.58497 · γ (11)

4.2. Moments

Let T be a random variable. For a positive integer r, if T ∈ Lr, the r-th moment of T
is defined as:

E[T r] =
∫

∞

0
tr f (t)dt (12)

Here, Lr is the space of all random variables such that E[|T |r]< ∞ (see [7]).

Theorem 3. The r-th moment of a random variable T following the STHN distribution
is given by:

µ
′
r =

√
2
π

ln(2) · γr
∞

∑
k=0

(ln(2))k

k!
Ir,k (13)

where

Ir,k =
∫

∞

0
ure−u2/2

(
erf
(

u√
2

))k

du (14)

4.3. Mean and Variance of the STHN Distribution

If the random variable T ∈ L1, then its mean is defined by:

µ = E[T ] =
∫

∞

0
t f (t)dt (15)

Substituting the expression for the moments µ ′
1, we obtain:

µ = µ
′
1 =

γ
√

2ln(2)√
π

∞

∑
k=0

(ln2)k

k!
I1,k (16)

Similarly, suppose the random variable T ∈ L2, then its variance is the second central
moment, given by:

Var(T ) = E
[
(T −E[T ])2]= E[T 2]− (E[T ])2 = µ

′
2 − (µ ′

1)
2 (17)
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Using the expression for the second moment µ ′
2, we have:

Var(T ) =
γ2
√

2ln(2)√
π

∞

∑
k=0

(ln2)k

k!
I2,k −µ

2 (18)

4.4. Moment Generating Function

The moment generating function (MGF) of the random variable T is defined by:

ψT (x) = E[exT ] =
∫

∞

0
ext fST(t;γ

2)dt (19)

Expanding ext in a power series and interchanging summation and integration yields:

ψT (x) =
∞

∑
r=0

xr

r!

∫
∞

0
tr fST(t;γ

2)dt =
∞

∑
r=0

xr

r!
µ
′
r (20)

Using the expression for µ ′
r:

ψT (x) =

√
2ln(2)√

π

∞

∑
k=0

∞

∑
r=0

xr

r!
· (ln2)k

k!
· γrIr,k (21)

4.5. Characteristic Function

According to Karr (1993), the characteristic function of a random variable T is a
function ϕT : R→ C defined by:

ϕT (x) = E[eixT ] =
∫

∞

0
eixt fST(t;γ

2)dt (22)

Expanding eixt using the power series and interchanging the summation and integra-
tion gives:

ϕT (x) =
∞

∑
r=0

(ix)r

r!

∫
∞

0
tr fST(t;γ

2)dt (23)

=
∞

∑
r=0

(ix)r

r!
µ
′
r (24)

Substituting the expression for µ ′
r, we obtain:

ϕT (x) =

√
2ln(2)√

π

∞

∑
k=0

∞

∑
r=0

(ix)r

r!
· (ln2)k

k!
· γrIr,k (25)

where i =
√
−1 is the imaginary unit.
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4.6. Order Statistics

Let T(1) ≤ T(2) ≤ ·· · ≤ T(n) denote the order statistics of a random sample
T1,T2, . . . ,Tn drawn from the STHN distribution. The probability density function of
the ith order statistic T(i) is given by:

gT(i)(t) =
n!

(i−1)!(n− i)!
f (t)F(t)i−1(1−F(t))n−i, t > 0 (26)

Using the PDF and CDF of the STHN distribution, this becomes:

gT(i)(t) =
n!

(i−1)!(n− i)!
·
√

2ln(2)
γ
√

π
2erf

(
t

γ
√

2

)
e−t2/(2γ2) (27)

·
(

2erf
(

t
γ
√

2

)
−1
)i−1(

2−2erf
(

t
γ
√

2

))n−i

(28)

In particular, the PDFs of the smallest (T(1)) and largest (T(n)) order statistics are:

gT(1)(t) =

√
2ln(2)
γ
√

π
·ne−t2/(2γ2)2erf

(
t

γ
√

2

)(
2−2erf

(
t

γ
√

2

))n−1

(29)

gT(n)(t) =

√
2ln(2)
γ
√

π
·ne−t2/(2γ2)2erf

(
t

γ
√

2

)(
2erf

(
t

γ
√

2

)
−1
)n−1

(30)

5. Maximum Likelihood Estimation of Parameters and Simulation

The method of maximum likelihood can be used to estimate the parameters of the
STHN distribution. Let T1,T2, . . . ,Tn be a random sample from the STHN distribution
with probability density function fST(t;θ), where θ = γ2 is the parameter of interest.

The likelihood function is given by:

L(θ ; t1, . . . , tn) =
n

∏
i=1

fST(ti;θ) (31)

Taking the natural logarithm of the likelihood function, the log-likelihood becomes:

logL(θ) =
n

∑
i=1

log

(√
2ln(2)√

πγ
·2erf

(
ti

γ
√

2

)
· e−t2

i /(2γ2)

)
(32)

Simplifying:

logL(θ) = n log

(√
2ln(2)√

πγ

)
+ ln(2)

n

∑
i=1

erf
(

ti
γ
√

2

)
−

n

∑
i=1

t2
i

2γ2 (33)



116 Fatma Zohra Bousseba, Amine Sakri

To obtain the MLE of γ , we differentiate the log-likelihood with respect to γ and
solve the resulting nonlinear equation:

∂ logL
∂γ

=−n
γ
+

√
2ln(2)√

π

n

∑
i=1

[
∂

∂γ

(
1
γ
·2erf

(
ti

γ
√

2

)
· e−t2

i /(2γ2)

)]
= 0 (34)

Since this equation cannot be solved analytically, numerical optimization techniques
such as the Newton-Raphson method or the Nelder-Mead simplex method are recom-
mended.

According to the asymptotic theory (Roussas, 2003; Karr, 1993), the MLE γ̂ is a
consistent and asymptotically normal estimator. As the sample size increases, the MLE
converges in probability to the true parameter value.

5.1. Simulation Study Using the Acceptance-Rejection Algorithm

We perform a simulation study to generate random samples from the STHN distribu-
tion using the Acceptance-Rejection (AR) algorithm, as described in Robert and Casella
(1999). The half-normal distribution is used as the proposal density. Samples are gener-
ated for different values of γ = {0.5,1,1.5}, with 100,000 iterations per scenario.

The accepted samples represent realizations from the STHN distribution and are
shown in Figure 3. These synthetic datasets are then used to estimate the model param-
eter using the MLE method.

Figure 3: Simulated samples from the STHN distribution using AR algorithm for γ =
0.5, 1, and 1.5.

5.2. Parameter Estimation via MLE

We now assess the performance of the MLE method for estimating the parameter
γ based on simulated data. For each value of γ , we consider increasing sample sizes:
n = 75,100,200,500,1000. For each case, we compute the bias, mean squared error
(MSE), and mean relative error (MRE) of the MLE estimator γ̂ .

Definitions:
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• Bias: Bias(γ̂) = E[γ̂]− γ

• MSE: MSE(γ̂) = E[(γ̂ − γ)2]

• MRE: MRE(γ̂) = E[|γ̂−γ|]
γ

The results are summarized in Table 1, showing that as n increases, the bias, MSE,
and MRE all tend to decrease, confirming the consistency and reliability of the MLE.

Table 1: Bias, MSE, and MRE of γ̂ based on simulated samples from the STHN distri-
bution

γ n γ̂ Bias MSE MRE
5*0.5 75 0.5475 0.0642 0.00512 0.1281

100 0.5494 0.0587 0.00507 0.1177
200 0.5508 0.0535 0.00372 0.1074
500 0.5551 0.0552 0.00352 0.1102
1000 0.5532 0.0532 0.00311 0.1073

5*1 75 1.0951 0.1282 0.02287 0.1281
100 1.0993 0.1175 0.02027 0.1178
200 1.1016 0.1074 0.01518 0.1074
500 1.1101 0.1105 0.01425 0.1103
1000 1.1072 0.1072 0.01262 0.1072

5*1.5 75 1.6422 0.1926 0.05145 0.1281
100 1.6482 0.1764 0.04555 0.1178
200 1.6521 0.1612 0.03418 0.1074
500 1.6658 0.1653 0.03208 0.1103
1000 1.6605 0.1608 0.02842 0.1072

6. Model Comparison Using Real Data Sets

To assess the practical applicability of the proposed STHN distribution, we com-
pare its performance against other well-known models, namely the New-XLindley
(NXLD), Exponential (EXPD), Lindley (LD), X-Lindley (XLD), XGamma (XGD),
Weibull (WB), and Gamma (GAM) distributions. The comparison is based on classi-
cal model selection criteria: Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Consistent Akaike Information Criterion (CAIC), and Hannan-Quinn
Information Criterion (HQIC). For each dataset, the model with the lowest values of
these criteria is considered to offer the best fit.
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Dataset 1: Number of Scientific Discoveries (1860–1959)

This dataset represents the number of scientific discoveries and major inventions
recorded each year from 1860 to 1959, as compiled in the World Almanac and Book
of Facts [17].

Dataset:

5, 3, 0, 2, 0, 3, 2, 3, 6, 1, 2, 1, 2, 1, 3, 3, 3, 5, 2, 4, 4,

0, 2, 3, 7, 12, 3, 10, 9, 2, 3, 7, 7, 2, 3, 3, 6, 2, 4, 3, 5, 2,

2, 4, 0, 4, 2, 5, 2, 3, 3, 6, 5, 8, 3, 6, 6, 0, 5, 2, 2, 2, 6, 3,

4, 4, 2, 2, 4, 7, 5, 3, 3, 0, 2, 2, 2, 1, 3, 4, 2, 2, 1, 1, 1, 2,

1, 4, 4, 3, 2, 1, 4, 1, 1, 1, 0, 0, 2, 0

Table 2. ML estimates and model selection criteria for Dataset 1.

Distribution Estimate AIC BIC -2L AICC HQIC
EXPD 0.3226 428.2804 430.8856 426.2804 428.3212 429.3348
LD 0.5330 417.7608 420.3660 415.7608 417.8016 418.8152
XLD 0.4704 420.9874 423.5926 418.9874 421.0283 422.0418
NXLD 0.4923 420.1228 422.7280 418.1228 420.1636 421.1772
XGD 0.7154 415.2443 417.8495 413.2443 415.2852 416.2987
WB 1.7312 416.3512 419.2807 414.3512 416.3912 417.2043
GAM 2.0164 417.8423 420.4475 415.8423 417.8831 418.8967
STHND 3.4447 415.2358 417.8409 413.2358 415.2766 416.2901

Dataset 2: Exchange Rates for Mexico (1985–2006)

This dataset contains yearly exchange rates of the Mexican Peso per U.S. dollar, pub-
lished in the Economic Report of the President [6].

Table 3. ML estimates and model selection criteria for Dataset 2.

Distribution Estimate AIC BIC -2L AICC HQIC
EXPD 0.1625 125.9629 127.0539 123.9629 126.1629 126.2199
LD 0.2885 122.6140 123.7051 120.6140 122.8140 122.8711
XLD 0.2638 123.0739 124.1649 121.0739 123.2739 123.9838
NXLD 0.2491 123.7268 124.8178 121.7268 123.9268 123.9838
XGD 0.3968 121.4576 122.5486 119.4576 121.6576 121.7146
WB 0.9543 122.7789 123.8700 120.7789 122.9789 123.0359
GAM 1.1205 123.3642 124.4553 121.3642 123.5642 123.6213
STHND 6.4938 119.9229 121.0139 117.9229 120.1229 120.1799



119

Dataset 3: Exchange Rates for Sweden (1985–2006)

This dataset covers yearly exchange rates of the Swedish Krona per U.S. dollar, also
from the Economic Report of the President [6].

Table 4. ML estimates and model selection criteria for Dataset 3.

Distribution Estimate AIC BIC -2L AICC HQIC
EXPD 0.1332 134.7121 135.8031 132.7121 134.9121 134.9691
LD 0.2405 122.5531 123.6442 120.5531 122.7531 122.8101
XLD 0.2212 125.6430 126.7340 123.6430 125.8430 125.9000
NXLD 0.2149 129.0876 130.1787 127.0876 129.2876 129.3447
XGD 0.3519 119.0410 120.1320 117.0410 119.2410 119.2980
WB 0.8651 120.5213 121.6124 118.5213 120.7213 120.7783
GAM 1.1342 121.9874 123.0785 119.9874 122.1874 122.2445
STHND 6.6142 117.7977 118.8887 115.7977 117.9977 118.0547

Across all three real datasets, the STHN distribution consistently outperforms the
NXLD, EXPD, LD, XLD, XGD, Weibull, and Gamma models. These findings indicate
that the STHN model is not only theoretically tractable but also empirically effective and
deserves consideration for broader applications in statistical modeling.

7. Conclusion

In this study, we have introduced the Square Transformed Half-Normal Distribution
(STHND), a novel two-parameter probability distribution derived by applying a square
transformation to the classical half-normal distribution. The resulting model exhibits
desirable features, including closed-form expressions for the probability density func-
tion (PDF) and cumulative distribution function (CDF), as well as flexible hazard rate
shapes—such as increasing, decreasing, and bathtub forms—which make it highly suit-
able for modeling lifetime and reliability data.

Through extensive simulation studies and empirical analyses involving both real and
simulated datasets, the STHND has demonstrated superior performance compared to
several well-known distributions, including the exponential, Lindley, XLindley, New-
XLindley, and XGamma models. These results are supported by standard model selec-
tion criteria (AIC, BIC, CAIC, HQIC), which consistently favored the STHND across
all data scenarios.

The model also benefits from mathematically tractable properties, facilitating
straightforward estimation via maximum likelihood and enabling further statistical in-
ference. Unlike more complex generalizations of the half-normal family, the STHND
retains simplicity while achieving enhanced flexibility, thus offering an attractive bal-
ance between analytical convenience and modeling power.
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Perspectives and Future Work. Future research may focus on developing mul-
tivariate or matrix-variate extensions of the STHND to address correlated data struc-
tures. Bayesian approaches for parameter estimation could be explored, particularly
under informative priors in small-sample contexts. The use of the STHND in high-
dimensional survival analysis, reliability system modeling, or frailty models represents
another promising avenue. Applications in areas such as industrial engineering, biomed-
ical studies, and actuarial science may further validate and extend the utility of the pro-
posed distribution.

Overall, the STHND contributes a robust and versatile tool to the expanding family
of lifetime distributions and is well-positioned for broader adoption in applied statistical
modeling.

Annex

Proof of Theorem 1

a. If T is a random variable following the STHN distribution, then its CDF is ob-
tained by substituting Equation (3) into Equation (4):

FST (t;γ
2) = 2erf

(
t

γ
√

2

)
−1

b. The PDF is obtained by differentiating the CDF:

fST (t;γ
2) =

d
dt

(
2erf

(
t

γ
√

2

)
−1
)

= ln(2) ·2erf
(

t
γ
√

2

)
· d

dt

(
erf
(

t
γ
√

2

))

= ln(2) ·2erf
(

t
γ
√

2

)
· 2√

π
e−t2/(2γ2) · 1

γ
√

2

fST (t;γ
2) =

√
2ln(2)√

πγ
·2erf

(
t

γ
√

2

)
· e−t2/(2γ2)

To verify that this is a valid PDF:

∫
∞

0
fST (t)dt =

√
2ln(2)√

πγ

∫
∞

0
2erf

(
t

γ
√

2

)
e−t2/(2γ2)dt = 1

This identity is verified numerically or via variable transformation techniques, ensuring
the area under the PDF equals 1.
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Proof of Theorem 2

a. The survival function is derived as:

SST (t;γ
2) = 1−FST (t;γ

2) = 1−
(

2erf
(

t
γ
√

2

)
−1
)

= 2−2erf
(

t
γ
√

2

)
Alternatively, this result can be obtained from the integral definition of the survival func-
tion:

SST (t;γ
2) =

∫
∞

t
fST (x;γ

2)dx

Applying a change of variable u = erf
(

x
γ
√

2

)
with Jacobian:

du
dx

=
2√
π

e−x2/(2γ2) · 1
γ
√

2
⇒ dx =

γ
√

π√
2

ex2/(2γ2)du

Substituting and simplifying gives:

SST (t;γ
2) = ln(2)

∫ 1

erf
(

t
γ
√

2

) 2udu = 2−2erf
(

t
γ
√

2

)

b. The hazard rate function is:

hST (t;γ
2) =

fST (t;γ2)

SST (t;γ2)
=

√
2ln(2)√

πγ
2erf

(
t

γ
√

2

)
e−t2/(2γ2)

2−2erf
(

t
γ
√

2

)
This ratio confirms the hazard function behavior. Numerical simulation shows increas-
ing, decreasing or bathtub forms under various γ values.

Proof of Theorem 3

The rth raw moment is:

µ
′
r =

∫
∞

0
tr fST (t;γ

2)dt =

√
2ln(2)γr
√

π

∞

∑
k=0

(ln(2))k

k!
Ir,k

where:
Ir,k =

∫
∞

0
ure−u2/2(erf(u/

√
2))kdu
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This series representation is derived using the expansion:

2w =
∞

∑
k=0

(ln2)k

k!
wk where w = erf

(
t

γ
√

2

)
Substituting into the moment formula and applying a change of variable t = uγ , we
obtain the generalized moment formula above. Numerical integration can be employed
to compute Ir,k for small k.

These expressions allow us to obtain all moments and hence derive the mean, vari-
ance, skewness, and kurtosis.
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