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New approach of (G′/G)-expansion method to solve the
fractional differential equations arising in fluid mechan-
ics
Yusif Gasimov, Jalil Manafian, Aynura Aliyeva

Abstract. In this paper, an approach based on the generalized (G′/G)-expansion method for
two nonlinear fractional physical models is proposed to achieve their solutions including three
kinds of hyperbolic function solution and trigonometric function solution as well as the rational
solution. These relations are the space-time fractional Whitham-Broer-Kaup (WBK), general-
ized Hirota-Satsuma coupled KdV equations. The fractional derivative in the present work is
presented from the Caputo viewpoint, and precise solutions of the stated nonlinear fractional
equations are obtained. Also, the generalized fractional complex transform is employed properly
for conversion of this equation into an ordinary differential equation (ODE). Subsequently, some
precise solutions are obtained.
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1. Introduction

The space-time fractional WBK relation is presented in the following form:

Dα
t u+ uDα

xu+Dα
xv + βD2α

x u = 0, 0 < α ≤ 1,

Dα
t v + Dα

x( uv)− β D2α
x v + γ D3α

x u = 0. (1)

Where, u(x, t) and v (x, t) are the horizontal velocity’s field and the max deviation
from the equilibrium location of the liquid; β and γ denote two real coefficients with
fixed values presenting diferent difusion powers. Once α = 1, Eq. (1) is the generalized
format of WBK relations that is usable for description of the dispersive long wave in the
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shallow water [1, 2, 3]. The space-time fractional generalized Hirota-Satsuma coupled
KdV relations [4] are given as:

Dα
t u− 1

2D
3a
x u+ 3uDa

xu− 3Dα
x (vw) = 0,

Dα
t v +D3α

x v − 3uDα
xv = 0,

Dα
t w +D3α

x w − 3uDα
xw = 0.

(2)

There are many utilities for the fractional calculus in various scientific fields that are
based on the mathematical modelling. The signal/image processing, physical/chemical
fields, aerodynamics, economics, polymer rheology, biophysics, and control theory are
some of these applications [5, 6, 7]. Various manners are studied by researchers to derive
the fractional calculus like numerical methods that solve the fractional DEs by various
numerical tools. Utilization of tan (Φ (ξ) /2) expansion approach is an efficient and ana-
lytical method to solve the fractional partial DEs (FPDEs). Various efficient approaches
are presented in the recent years to search precise solutions of nonlinear evolution rela-
tions. For instance, Hirota’s bilinear approach is proposed in [8], and homotopy analysis
technique is presented in [9, 10]. In addition, some other methods are reported in the
literature including variational iteration approach [11, 12], homotopy perturbation ap-
proach [13], sine-cosine and tanh-coth techniques in [14] and [15], Backlund transfor-
mation [16], (G′/G) expansion technique [17, 18], and Exp-function approach [? ], as
well as improved simple equation approach [22]. Two high-performance approaches are
utilized in this paper to provide a series of precise solutions for the considered nonlinear
partial DEs (NLPDEs). The original tanh approach is a famous analytical approach that
is firstly introduced by Malffiet’s [23] and is also presented in [23, 24]. A general version
of the tanh-coth approach is proposed in [15] to solve some NLPDEs. Reference [25]
suggested a novel version of the generalized (G′/G) expansion approach for achieving
precise traveling wave solutions of NLEEs. Two powerful methods of the generalized
tanh–coth and generalized (G′/G)-expansion are proposed in the present work for seek-
ing the travelling wave solutions of nonlinear evolution relations. Precise solutions of
the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota are achieved in [26] using
these two generalized approaches. Moreover, (G′/G) expansion approach is used in [27]
to precisely solve a number of nonlinear evolution equations. More information of these
approaches are presented in [28, 29, 30]. Present work is mainly aimed to analytically
solve the space-time fractional Whitham-Broer-Kaup, and generalized Hirota-Satsuma
coupled with KdV equations. Also, the accuracy of the generalized (G′/G) expansion
approach is evaluated here for the considered problems. Some basic studies for different
aspects of the fractional calculus are provided by Caputo [31], Debanth [32], Jafari and
Seifi [33], Kemple and Beyer [34], Kirci et al. [35], Kilbas and Trujillo [36], Momani
and Shawagfeh [37], Oldham and Spanier [38]. Additionally, multitude approaches are
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suggested for solving the FPDEs including Laplace transform and Fourier transform
approaches [34], Adomian’s decomposition [37], homotopy analysis [39], etc. Conse-
quently, in recent years, various techniques have been devised by researchers to address
these problems, including the fractional generalized CBS-BK equation [40], the general-
ized Bogoyavlensky-Konopelchenko equation [41], the generalized Hietarinta equation
[42], the nonlinear vibration and dispersive wave systems [43], and the Van der Waals
model [44]. The improved extended tanh-function approach is used in the present work
to solve FPDEs in the sense of the modified Riemann-Liouville derivative that is intro-
duced in [45]. We can reduce the considered equations to nonlinear ODEs with inte-
ger orders by a few fractional complex transformations. Jumarie’s modified Riemann-
Liouville derivative with order of α can be presented in the below form:

Dα
t u(t) =

=


1

Γ(1−α)

t∫
0

(t− τ)−α(u(τ)− u(0))dτ if 0 < α ≤ 1,[
u(n)(t)

](α−n)
, if n ≤ α < n+ 1, n ≥ 1.

(3)

Some important features of the modified Riemann-Liouville derivative are given by:

(1)Dα[f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t),
(2)Dα[f(g(t))] = f ′

g(g(t))D
αg(t),

(3)Dα[f(g(t))] = Dα
g f(g(t))[g

′(t)]α,

(4) Dα
t t

γ = Γ(γ+1)
Γ(1+α−γ) t

γ−α, γ > 0.

(4)

Where G is the Gamma function. Rest of this study is structured in the following form:
Section 2 presented the preliminaries and Notations. The fractional complex transform
is described briefly in Section 3. Section 4 contains the generalized (G′/G) expansion
approach explanation. Also, the space-time fractional WBK, space-time fractional gen-
eralized Hirota-Satsuma coupled KdV equations are evaluated in Section 4. At the last,
the paper is concluded in Section 5.

2. The generalized (G′/G)-expansion method

The diverse type of PDE, in through the nonlinear segment and the uppermost order
of differential are involved.

Step 1. It’s assumed that the considered nonlinear FPDE for u(x, t) can be presented
as follows:

N (u,Dα
t u,D

α
xu, . . . ) = 0, 0 < α ≤ 1. (5)
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Where Da
t u and Da

xu are the modified Riemann-Liouville derivatives and N is a poly-
nomial in u = u(x, t) and its fractional derivatives. N can be converted to an ODE:

Q(u,−cu
′
, ku

′
, . . . ) = 0. (6)

By the transformation ξ = kxα

Γ(α+1) − ctα

Γ(α+1) , is wave variable. Also, k, c are constants
that will be obtained later.

Step 2. Assume that the traveling wave solution of Eq. (6) is given by:

u(ξ) = S(Φ(ξ)) =
m∑
k=0

Ak(p+Φ(ξ))k +
m∑
k=1

Bk(p+Φ(ξ))−k. (7)

Where, Ak(0 ≤ k ≤ m) are constant values and should be determined, in a way that
Am ̸= 0 , Bm ̸= 0 and Φ(ξ) = G′(ξ)/G(ξ) meets the below ODE:

k1GG
′′ − k2GG

′ − k3(G
′
)2 − k4G

2 = 0. (8)

The special solutions of above equation will be considered here:
Family 1: When k2 ̸= 0, r = k1 − k3 and s = k22 + 4k4(k1 − k3) > 0, then

Φ(ξ) =
k2
2r

+

√
s

2r

C1 sinhξ(
√
s

2k1
ξ) + C2 coshξ(

√
s

2k1
ξ)

C1 coshξ(
√
s

2k1
ξ) + C2 sinhξ(

√
s

2k1
ξ)
.

Family 2: When k2 ̸= 0, r = k1 − k3 and s = k22 + 4k4(k1 − k3) < 0, then

Φ(ξ) =
k2
2r

+

√
−s

2r

−C1 sinξ(
√
−s

2k1
ξ) + C2 cosξ(

√
−s

2k1
ξ)

C1 cosξ(
√
−s

2k1
ξ) + C2 sinξ(

√
−s

2k1
ξ)

.

Family 3: When k2 ̸= 0, r = k1 − k3 and s = k22 + 4k4(k1 − k3) = 0, then
Φ(ξ) = k2

2r +
C2

C1+C2ξ
.

Family 4: When k2 = 0, r = k1 − k3 and q = rk4 > 0, then

Φ(ξ) =

√
q

r

C1 sinhξ(
√
q

k1
ξ) + C2 coshξ(

√
q

k1
ξ)

C1 coshξ(
√
q

k1
ξ) + C2 sinhξ(

√
q

k1
ξ)
.

Family 5: When k2 = 0, r = k1 − k3 and q = rk4 < 0, then

Φ (ξ) =

√
−q

r

−C1 sinξ(
√
−q
k1

ξ) + C2 cosξ(
√
−q
k1

ξ)

C1 cosξ(
√
−q
k1

ξ) + C2 sinξ(
√
−q
k1

ξ)
.
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Family 6: When k4 = 0 and r = k1 − k3, then

Φ(ξ) =
C1k

2
2 expξ(

−k2
k1

ξ)

rk1 + C1k1k2 expξ(
−k2
k1

ξ)
.

Family 7: When k2 ̸= 0 and r = k1 − k3 = 0, then

Φ (ξ) = −k4
k2

+ C1exp

(
k2
k1

ξ

)
,

where Aj (j = 0, 1, . . . , m) , Bj (j = 1, . . . , m) , a, b and c are fixed values that
should be determined. While, m is a positive integer which can be integrated by consis-
tent the highest order of derivatives to the highest order of nonlinear portions, perform
in Eq. (8).

Step 3. Inserting Eq. (7) into Eq. (6) by the determined m amount in prior step.
Through gathering the parameters of (p + Φ(ξ))k , (p + Φ(ξ))−k (k = 0, 1, 2, ...)
and setting them to zero, a series of over-determined partial DEs will be obtained for
A0, Ak, Bk (k = 1, . . . , m) k1, k2, k3, k4 and p using Maple 18.

Step 4. Solving the algebraic equations of prior step, and inserting
Aj , Bj (j = 1, . . . , m) , k , c, p in Eq. (7).

3. Illustrative examples

Multitude examples are presented in this part of the paper in order to demonstrate
the efficiency and ability of the generalized (G′/G)-expansion approach in solving non-
linear FPDEs introduced in Section 1.

3.0.1. The space-time fractional WBK equations

Consider the nonlinear space-time fractional WBK in the following form:

Dα
t u+ uDα

xu+Dα
xu+ βD2α

x u = 0,
Dα

t v +Dα
x (uv)− βD2α

x v + γD3α
x u = 0.

(9)

By using the wave variable ξ = kxa

Γ(α+1) − ctα

Γ(α+1) , it can be reduced into an ordinary
DE in the following form:

−cu+ k
2u

2 + kv + βk2u
′
= 0,

−cv + k(uv)− βk2v
′
+ γk3u

′′
= 0.

(10)

Where Eq. (10) is achieved via integration based on ξ and ignoring the constant of
this integration. Below result can be achieved by regarding the balance between u′

128



and u2 in Eq. (10) as M + 1 = 2M → M = 1. In a similar way, below result
is reached by regarding the homogeneous balance between u′′ and uv in Eq. (10) as
M + 2 = M +N → N = 2. Then the trail solution is:

u = A0 + A1( p+Φ) +
B1

p+Φ
, v(ξ) =

= E0 + E1( p+Φ) + E2( p+Φ)2 +
D1

p+Φ
+

D2

( p+Φ)2
. (11)

Inserting (11) into Eq. (10) and with the aid of Maple computational tool, below sets of
non-trivial solutions can be achieved.

Set I:
k =

A1 k1

2 k3
√

β2 + γ
,

c =
A2

1 k1

√
k22 − k3 k4

4 k23
√

β2 + γ
, A1 = A1, B1 = 0, D1 = 0, D2 = 0, (12)

p = 0, z = 1 +
β√

β2 + γ
, E0 = − k4 A

2
1 s

2 k3
, E1 = − k2 A

2
1 s

2 k3
, E2 = − A2

1 s

2
,

A0 =
A1

2 k3
( k2+

√
k22 − 4 k3 k4), u(ξ) = A0+ A1Φ(ξ), v(ξ) = E0+ E1Φ(ξ)+ E2Φ

2(ξ).

(13)
Where k1, k2, k3, γ and m are arbitrary fixed values. Considering Eq. (15) and Family
1 (if C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get respectively:

u11(ξ) =
A1

2 k3
( k2 +

√
k22 − 4 k3 k4) + A1

[
k2
2 r

+

√
s

2 r
coth(

√
s

2 k1
ξ)

]
,

v11(ξ) = − k4 A
2
1 z

2 k3
− k2 A

2
1 z

2 k3

[
k2
2 r

+

√
s

2 r
coth(

√
s

2 k1
ξ)

]
−

− A2
1 z

2

[
k2
2 r

+

√
s

2 r
coth(

√
s

2 k1
ξ)

]2
, (14)

u12(ξ) =
A1

2 k3
( k2 +

√
k22 − 4 k3 k4) + A1[

k2
2 r

+

√
s

2 r
tanh

(√
s

2 k1
ξ

)
],

v12(ξ) = − k4 A
2
1 z

2 k3
− k2 A

2
1 z

2 k3

[
k2
2 r

+

√
s

2 r
tanh

(√
s

2 k1
ξ

)]
−

129



− A2
1 z

2

[
k2
2 r

+

√
s

2 r
tanh

(√
s

2 k1
ξ

)]2
, (15)

u13(ξ) =
A1

2 k3
( k2 +

√
k22 − 4 k3 k4) + A1

[
k2
2 r

+

√
− s

2 r
cot

(√
− s

2 k1
ξ

)]
,

v13(ξ) = − k4 A
2
1 z

2 k3
− k2 A

2
1 z

2 k3

[
k2
2 r

+

√
− s

2 r
cot

(√
− s

2 k1
ξ

)]
−

− A2
1 z

2

[
k2
2 r

+

√
− s

2 r
cot

(√
− s

2 k1
ξ

)]2
. (16)

Fig.1. Dynamical diversity of the function of Eq. (14) are demonstrated at
A1 = 3, k1 = 2, k2 = 2, k3 = 1, k4 = 1, β = 2, γ = 2, a = 0.9, and t = 10 with

the changes of fractional and free parameters.
130



Fig.2. Dynamical diversity of the function of Eq. (15) are demonstrated at
A1 = 3, k1 = 1, k2 = 2, k3 = 2, k4 = 2, β = 2, γ = 2, a = 0.9, and t = 10 with

the changes of fractional and free parameters.

By using of (13) and Family 2 (if C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u14(ξ) =
A1

2 k3
( k2 +

√
k22 − 4 k3 k4) + A1[

k2
2 r

−
√
− s

2 r
tan(

√
− s

2 k1
ξ)],

v14(ξ) = − k4 A
2
1 z

2 k3
− k2 A

2
1 z

2 k3
[
k2
2 r

−
√
− s

2 r
tan(

√
− s

2 k1
ξ)]−

− A2
1 z

2
[
k2
2 r

−
√
− s

2 r
tan(

√
− s

2 k1
ξ)]

2

. (17)

By using of (15) and Family 3 we get:

u1 5(ξ) =
A1

2 k3

(
k2 +

√
k22 − 4 k3 k4

)
+ A1

[
k2
2 r

+
C2

C1 + C2ξ

]
,

v1 5(ξ) = − k4 A
2
1 z

2 k3
− k2 A

2
1 z

2 k3

[
k2
2 r

+
C2

C1 + C2ξ

]
−
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− A2
1 z

2

[
k2
2 r

+
C2

C1 + C2ξ

]2
. (18)

By using of (13) and Family 4 (if C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u16(ξ) =
A1

√
− k3 k4
k3

+
A1

√
q

r
coth

(√
q

k1
ξ

)
,

v16(ξ) = − k4 A
2
1 z

2 k3
− A2

1 qz

2 r2
coth2

(√
q

k1
ξ

)
, (19)

u17(ξ) =
A1

√
−4 k3 k4
2 k3

+
A1

√
q

r
tanh

(√
q

k1
ξ

)
,

v17(ξ) = − k4 A
2
1 z

2 k3
− A2

1 qz

2 r2
tanh2

(√
q

k1
ξ

)
. (20)

By using of (13) and Family 5 (if C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u18(ξ) =
A1

√
− k3 k4
k3

+
A1

√
− q

r
cot(

√
− q

k1
ξ), (21)

v18(ξ) = − k4 A
2
1 z

2 k3
+

A2
1 qz

2 r2
cot2(

√
− q

k1
ξ),

u19(ξ) =
A1

√
− k3 k4
k3

− A1
√
− q

r
tan

(√
− q

k1
ξ

)
,

v19(ξ) = − k4 A
2
1 z

2 k3
+

A2
1 qz

2 r2
tan2

(√
− q

k1
ξ

)
. (22)

By using of (13) and Family 6 we get:

u110 (ξ) =
A1 k2
k3

+
A1 C1 k

2
2 e

− k2
k1

ξ

rk1 + C1 k1 k2 e
− k2
k1

ξ
,

v110(ξ) = −
C1

k32A
2
12

2k3
e

−k2
k1

ξ

rk1 + C1k1k2e
−k2
k1

ξ
− A2

1z

2

 C1k
2
2e

− k2
k1

z

rk1 + C1k1k2e
−k2
k1 ξ

2

. (23)

Remark 1. 2-D and 3-D plots for imaginary and real values of Eq. (14) and (17) are
respectively captured in Figure 1 and Figure 2 that indicate the solutions’ dynamics
with proper parametric values. Based on the best knowledge of authors, the considered
fractional solitary solutions have not been reported so far in the works of researchers.
Achieved novel exact solutions in the present work offer a different physical interpreta-
tion for the nonlinear fractional WBK equation.
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3.1. The space-time fractional generalized Hirota-Satsuma coupled KdV
equations

The fractional generalized Hirota-Satsuma coupled KdV equations are considered in
this sub-section in the following form:

Dα
t u− 1

2D
3α
x u+ 3uDα

xu− 3Dα
x (vw) = 0,

Dα
t v +D3α

x v − 3uDα
xv = 0,

Da
tw +D3α

x w − 3uDα
xw = 0.

(24)

By utilizing the wave variable ξ = kxα

Γ(α+1) − ctα

Γ(α+1) reduce it to an ODE system as
follows:

−cu
′
+ k3

2 u
′′′
+ 3kuu

′ − 3k(vw)
′
= 0,−cv

′
+ k3v

′′′ − 3kuv
′
= 0,

−cw
′
+ k3w

′′′ − 3kuw
′
= 0.

(25)

By taking the homogeneous balance between u′′′ and (vw)′, v′′′ and uv′ , and also w′′′

and uw′ in Eq. (25) we get M+3 = N+P+1, N+3 = M+N+1, P+3 = M+P+1.
Then, we obtain M = N = P = 2.

u =

M∑
k=0

(·), v =

N∑
k=0

(·), w =

P∑
k=0

(·). (26)

Then, the trail solution is:

u(ξ) = A0 + A2( p+Φ(ξ))2 + B2
( p+Φ(ξ))2

,

v(ξ) = C0 + C2( p+Φ(ξ))2 + D2
( p+Φ(ξ))2

,

w(ξ) = E0 + E2( p+Φ(ξ))2 + F 2
( p+Φ(ξ))2

.

(27)

Substituting (27) into Eq. (25) and by utilizing the well-known Maple software, we can
get the below sets of non-trivial solutions as:

Set I:

k = k, c = −3 k A0, A0 = A0, B2 =
4 k2 k24

k21
, E0 = E0,

D2 = D2, p = p, k2 = 0, k3 = 0, (28)

C0 = − D2
2 k

2
1

4 k4 k44
(8A0 k

2 k24−E0D2 k
2
1), E2 = 0, F2 =

4 k4 k44
D2 k

4
1

, A2 = 0, C2 = 0, k4 = k4,

u(ξ) = A0+ B2( p+Φ(ξ))−2, v(ξ) = C0+ D2( p+Φ(ξ))−2, w(ξ) = E0+ F 2( p+Φ(ξ))−2.
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Where k4, k and p are arbitrary fixed values. Considering Eq. (28) and Family 1 (if
C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get respectively:

u11(ξ) = A0 +
4 k2 k24

k21

[
p+

√
s

2 r
coth(

√
s

2 k1
ξ)

]−2

,

w11(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

√
s

2 r
coth(

√
s

2 k1
ξ)

]−2

,

v11(ξ) = − D2
2 k

2
1

4 k4 k44
(8 A0 k

2 k24− E0 D2 k
2
1)+ D2

[
p+

√
s

2 r
coth(

√
s

2 k1
ξ)

]−2

. (29)

Fig.3. Dynamical diversity of the function of Eq. (29) are demonstrated at
p = 2, A0 = 3, k = 2, k1 = 2, k2 = 2, k3 = 1, k4 = 1, a = 0.9, and t = 10 with

the changes of fractional and free parameters.

u12(ξ) = A0+
4 k2 k24

k21
[ p+

√
s

2 r
tanh(

√
s

2 k1
ξ)]

−2

, w12(ξ) = E0+
4 k4 k44
D2 k

4
1

[ p+

√
s

2 r
tanh(

√
s

2 k1
ξ)]

−2

,

v12 (ξ) = −D2
2k

2
1

4k4k44

(
8A0k

2k24 − E0D2k
2
1

)
+D2

[
p+

√
s

2r
tanh

(√
s

2k1
ξ

) ]−2

. (30)
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By using of (28) and Family 2 (when C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u13 (ξ) = A0 +
4 k2 k24

k21

[
p+

√
− s

2 r
cot

(√
− s

2 k1
ξ

) ]−2

,

w13 (ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

√
− s

2 r
cot

(√
− s

2 k1
ξ

) ]−2

,

v13 (ξ) = − D2
2 k

2
1

4 k4 k44

(
8 A0 k

2 k24 − E0 D2 k
2
1

)
+ D2

[
p+

√
− s

2 r
cot

(√
− s

2 k1
ξ

) ]−2

,

(31)

u14 (ξ) = A0 +
4 k2 k24

k21

[
p−

√
− s

2 r
tan

(√
− s

2 k1
ξ

) ]−2

,

w14 (ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p−

√
− s

2 r
tan

(√
− s

2 k1
ξ

) ]−2

,

v14 (ξ) = −D2
2k

2
1

4k4k44

(
8A0k

2k24 − E0D2k
2
1

)
+D2

[
p−

√
−s

2r
tan

(√
−s

2k1
ξ

) ]−2

. (32)

By using of (28) and Family 3 we get:

u15(ξ) = A0 +
4 k2 k24

k21

[
p+

C2

C1 + C2ξ

]−2

,

w15(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

C2

C1 + C2ξ

]−2

,

v15(ξ) = − D2
2 k

2
1

4 k4 k44
(8 A0 k

2 k24 − E0 D2 k
2
1) + D2

[
p+

C2

C1 + C2ξ

]−2

. (33)

By using of (28) and Family 4 (when C1 = 0, but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u16(ξ) = A0 +
4 k2 k24

k21

[
p+

√
q

r
coth

(√
q

k1
ξ

)]−2

,

w16(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

√
q

r
coth

(√
q

k1
ξ

)]−2

,

v16(ξ) = − D2
2 k

2
1

4 k4 k44
(8 A0 k

2 k24 − E0 D2 k
2
1) + D2

[
p+

√
q

r
coth

(√
q

k1
ξ

)]−2

,

(34)
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u17(ξ) = A0 +
4 k2 k24

k21

[
p+

√
q

r
tanh

(√
q

k1
ξ

)]−2

,

w17(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

√
q

r
tanh

(√
q

k1
ξ

)]−2

,

v17(ξ) = − D2
2 k

2
1

4 k4 k44
(8 A0 k

2 k24 − E0 D2 k
2
1) + D2

[
p+

√
q

r
tanh

(√
q

k1
ξ

)]−2

.

(35)
By using of (28) and Family 5 (when C1 = 0 but C2 ̸= 0, C1 ̸= 0 but C2 = 0) we get
respectively:

u1 8(ξ) = A0 +
4 k2 k24

k21

[
p+

√
− q

r
cot

(√
− q

k1
ξ

)]−2

,

w1 8(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p+

√
− q

r
cot

(√
− q

k1
ξ

)]−2

,

v18(ξ) = − D2
2 k

2
1

4 k4 k44
(8 A0 k

2 k24 − E0 D2 k
2
1) +D2

[
p+

√
− q

r
cot

(√
− q

k1
ξ

)]−2

,

(36)

u19(ξ) = A0 +
4 k2 k24

k21

[
p−

√
− q

r
tan

(√
− q

k1
ξ

)]−2

,

w1 9(ξ) = E0 +
4 k4 k44
D2 k

4
1

[
p−

√
− q

r
tan

(√
− q

k1
ξ

)]−2

,

v19(ξ) = −D2
2k

2
1

4k4k44
(8A0k

2k24 − E0D2k
2
1) +D2

[
p−

√
−q

r
tan

(√
−q

k1
ξ

)]−2

,

where ξ = 1
Γ(α+1)(kx

α − 3kA0t
α).

Remark 2. 2-D and 3-D plots for imaginary and real values of Eq. (29) are captured
in Figure 3 indicating solution’s’ dynamics with proper parametric values. Based on
the best knowledge of authors, the considered complex exponential function solutions
have not been reported in the literature so far. Achieved analytical solutions figures offer
a different physical interpretation for the considered nonlinear fractional generalized
Hirota-Satsuma coupled KdV equation.
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4. Conclusion

In this paper, a novel methods known as the generalized (G′/G)-expansion tech-
nique is proposed for achieving analytical solutions for the space-time fractional WBK
equation as well as the generalized Hirota-Satsuma coupled KdV equation. It’s demon-
strated that, achieved solutions for mentioned equations are very suitable even in com-
parison with the used approaches in [3, 4]. Baed on obtained results, the proposed
method offer high efficiency and reliability. In addition, new solutions are formally de-
rived in the present work. Obtained precise solutions contain three kinds of hyperbolic
function, and trigonometric function solutions as well as the rational one. Respect to the
results, the suggested approach is highly efficient and reliable method to obtain precise
solutions of broad types of problems. Precise solutions of fractional partial differen-
tial equations have an important significant disclose the internal mechanism of complex
physical phenomena. Besides of the physical utility, the close-form results of nonlinear
evolution equations can help the numerical solving tools for comparing the precision
of their solutions and assist them in the stability study. It is very clear that our pro-
moted technique is effective, reliable, and friendly applicable and deliver sufficient well-
matched explanations to NLFEEs arise in engineering, applied mathematics, nonlinear
dynamics and mathematical physics.
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