

A new form of fuzzy compactness

S. G. Dapke*, C. T. Aage, J. N. Salunke

Abstract. The notion of βS^* - compactness is introduced by I. M. Hanafy in L-fuzzy topological spaces based on S^* -compactness. [βS^* - compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl. 2(2009), no. 1, 27-37]. In this paper we introduced the notion of αS^* - compactness in L-fuzzy topological spaces based on α -compactness. We give some characterizations of αS^* - compactness and Some of its topological properties are discussed.

Key Words and Phrases: S^* - compactness, βS^* - compactness, αS^* - compactness

2000 Mathematics Subject Classifications: 54A20

1. Introduction

The concept of compactness is one of the most important concepts in general topology. The concept of compactness of a $[0, 1]$ -topological space was first introduced by Chang[4] in terms of open cover. Changs compactness has been greatly extended to the variable-basis case by Rodabaugh[16] and it may be regarded as a successful definition of compactness in poslat topology from the categorical point of view. Goguen[8] pointed out a deficiency in Changs compactness theory by showing that the Tychonoff Theorem is false. Since Changs compactness has some limitations, Gantner, Steinlage[6] and Warren introduced α -compactness, Lowen introduced fuzzy compactness[12], strong fuzzy compactness[13] and ultra-fuzzy compactness[14] and Wang[19] and Zhao[21] introduced N-compactness. Recently Shi[17] introduced S^* -compactness in L-fuzzy topological spaces. The notion of β -compactness is one of the good strong forms of compactness in topology. It was generalized and studied by many authors in fuzzy topological spaces. Also Shi[17] introduced a new notion of β -compactness in L-fuzzy topological spaces named βS^* - compactness.

In this paper, we introduced a new notion of α compactness in L-fuzzy topological spaces named as αS^* -compactness. we introduced the notion of αS^* - compactness in L-fuzzy topological spaces based on α -compactness. We give some characterizations of αS^* - compactness and Some of its topological properties of αS^* -compactness are also discussed.

*Corresponding author.

2. Preliminaries

Throughout, this paper, $(L, \vee, \wedge, 0)$ is a completely distributive de Morgan algebra, and X a nonempty set. L^X is the set of all L -fuzzy sets on X . An element a in L is called a prime element if $a \geq b \wedge c$ implies $a \geq b$ or $a \geq c$. a in L is called a co-prime element if a' is a prime element [7]. The set of non unite prime elements in L is denoted by $P(L)$. The set of nonzero co-prime elements in L is denoted by $M(L)$. The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ iff for every subsets $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$. In a completely distributive de Morgan algebra L , each element b is a sup of $a \in L : a \prec b$. In the sense of [11], [19] $a \in L : a \prec b$ is the greatest minimal family of b , in symbol $\beta(b)$. Moreover for $b \in L$, define $\beta^*(b) = \beta(b) \cap M(L)$, $\alpha(b) = \{a \in L : a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$. For $a \in L$ and $G \in L^X$, we denote $G^{(a)} = \{x \in X : G(x) \not\leq a\}$ and $G_{(a)} = \{x \in X : a \in \beta(G(x))\}$. [17], [18]

Definition 2.1. An L -fuzzy set G in an L -Fuzzy topological spaces (X, τ) is said to be

- (i) α -open if $G \leq \text{int cl int } G$.
- (ii) α -closed if $G \geq \text{cl int cl } G$.
- (iii) preopen if $G \leq \text{int cl } G$.
- (iv) preclosed if $G \geq \text{cl int cl } G$.
- (v) β -open if $G \leq \text{cl int cl } G$.
- (vi) β -closed if $G \geq \text{int cl int cl } G$.
- (vii) regular open if $G = \text{int cl } G$.
- (viii) regular closed if $G = \text{cl int cl } G$.
- (ix) regular semiopen if there exist a regular open subset H of X such that $H \subseteq G \subseteq \text{cl } H$.
- (x) regular semiclosed if there exist a regular closed subset H of X such that $H \supseteq G \supseteq \text{int } H$.

Definition 2.2. A function $f : X \rightarrow Y$ is said to be fuzzy β -continuous [5] (resp. $M\beta$ -continuous [9]) if the inverse image of every open (resp. β -open) L -fuzzy set in Y is β -open (resp. β -open) L -fuzzy set in X .

Definition 2.3. [17] Let (X, τ) be an L -fts, $a \in M(L)$ and $G \in L^X$. A subfamily ξ of L^X is called a β_a -cover of G if for any $x \in X$ with $a \notin \beta(G'(x))$, there exists an $A \in \xi$ such that $a \in \beta(A(x))$. A β_a -cover ξ of G is called an open (resp. regular open, preopen, etc.) β_a -cover of G if each member of ξ is open (resp. regular open, preopen, etc.).

It is obvious that ξ is a β_a -cover of G iff for any $x \in X$ it follows that $a \in \beta(G'(x)) \vee A \in \xi \vee A(x)$.

Definition 2.4. [17] Let (X, τ) be an L -fts, $a \in M(L)$ and $G \in L^X$. A subfamily ξ of L^X is called a Q_a -cover of G if for any $x \in X$ with $G(x) \not\leq a'$, it follows that $\rightarrow A \in \xi \vee A(x) \geq a$. A Q_a -cover ξ of G is called an open (resp. regular open, preopen, etc.) Q_a -cover of G if each member of ξ is open (resp. regular open, preopen, etc.).

Definition 2.5. [17] Let (X, τ) be an L -fts, $a \in M(L)$ and $G \in L^X$. G is called S^* -compact if for any $a \in M(L)$, each open β_a -cover of G has a finite subfamily F which is an open Q_a -cover of G . (X, τ) is said to be S^* -compact if \rightarrow_1 is S^* -compact.

Definition 2.6. [10] Let (X, τ) be an L -fts and $G \in L^X$. Then G is called βS^* -compact if for any $a \in M(L)$, every β -open β_a -cover of G has a finite subfamily F which is β -open Q_a -cover of G . (X, τ) is said to be βS^* -compact if X is βS^* -compact.

3. Topological properties of αS^* - compactness

Definition 3.1. A function $f : X \rightarrow Y$ is said to be fuzzy α -continuous (resp. $M\alpha$ -continuous) if the inverse image of every open (resp. α -open) L -fuzzy set in Y is α -open (resp. α -open) L -fuzzy set in X .

Definition 3.2. Let (X, τ) be an L -fts and $G \in L^X$. Then G is called αS^* -compact if for any $a \in M(L)$, every α -open β_a -cover of G has a finite subfamily F which is α -open Q_a -cover of G . (X, τ) is said to be αS^* -compact if X is αS^* -compact.

Theorem 3.3. Let $f : X \rightarrow Y$ be fuzzy α -continuous surjection. If X is a αS^* -compact L -fts then Y is S^* -compact L -fts, where X and Y will be denote L -fts, s.

Proof. For all $b \in M(L)$, let $(\nu_j : j \in J)$ be a family of open L -fuzzy subsets of Y which is open β_b -cover of Y . Then $(f^{-1}(\nu_j) : j \in J)$ is a family of α -open L -fuzzy subsets of X which is α -open β_a -cover of X , for all $a \in M(L)$ where $f(a) = b$. From the S^* -compactness of X there exists a finite subset F of J which is α -open Q_a -cover of X . Hence $f(\rightarrow j \in F \vee f^{-1}(\nu_j)) = \rightarrow j \in F \vee f(\rightarrow j \in F \vee f^{-1}(\nu_j)) = \rightarrow j \in F \vee \nu_j$ and so is open Q_a -cover of X . which means that Y is S^* -compact .

Theorem 3.4. If $f : X \rightarrow Y$ is fuzzy open and fuzzy continuous function , then f is fuzzy $M\alpha$ -continuous.

Proof. Let H be a α -open L -fuzzy set in Y , then

$$H \leq \text{int.cl.int}H$$

so

$$f^{-1}(H) \leq f^{-1}(\text{int.cl.int}H) \quad (1)$$

since, f is fuzzy continuous, then

$$f^{-1}(\text{int.cl.int}H) = \text{int}(f^{-1}(\text{cl.int}H)) \quad (2)$$

also, clearly,

$$f^{-1}(\text{cl.int}H) \leq \text{cl}(f^{-1}(\text{int}H)) \quad (3)$$

since, f is fuzzy continuous, then

$$(f^{-1}(intH)) = intf^{-1}(H) \quad (4)$$

By 1,2, 3, 4 we get,

$$f^{-1}(H) \leq f^{-1}(int.cl.intH) = int(f^{-1}(cl.intH)) \leq int.cl.f^{-1}(intH) = int.cl.int(f^{-1}(H))$$

Hence ,

$$f^{-1}(H) \leq int.cl.int(f^{-1}(H))$$

Hence, f is fuzzy $M\alpha$ -continuous.

Theorem 3.5. *Let $f : X \rightarrow Y$ be fuzzy $M\alpha$ -continuous surjection. If X is a $M\alpha$ -compact L - fts then Y is a $M\alpha$ -compact L - fts.*

Proof. by using the definition of $M\alpha$ continuous function and 3.4, we get proof.

Theorem 3.6. *Let $f : X \rightarrow Y$ be a fuzzy $M\alpha$ - open bijective function and Y is $M\alpha$ -compact, then X is $M\alpha$ -compact.*

Proof. For all $a \in M(L)$, let $(\nu_j : j \in J)$ be a family of α - open L -fuzzy subsets of X which is α - open β_a - cover of X . Then $(f(\nu_j) : j \in J)$ is a family of α - open L -fuzzy subsets of Y which is α - open β_b - cover of Y , for all $b \in M(L)$ where $f(a) = b$. From the αS^* -compactness of Y there exists a finite subset F of J which is α - open Q_b - cover of Y . But $X = f^{-1}(Y) = f^{-1}f(\rightarrow j \in F \vee \nu_j) = \rightarrow j \in F \vee \nu_j$ which is α - open Q_a - cover of X and therefore X is αS^* -compact.

Theorem 3.7. *Let (X, τ) be an L - fts. If G and H are αS^* -compact L -fuzzy subsets of X , then $G \vee H$ is also αS^* -compact L -fuzzy subsets of X .*

Proof. For any $a \in M(L)$, suppose that ξ is an α - open β_a -cover of $G \vee H$ Then by $(G \vee H)'(x) \vee \rightarrow A \in \xi \vee A(x) = (G'(x) \vee \rightarrow A \in \xi \vee A(x)) \wedge (H'(x) \vee \rightarrow A \in \xi \vee A(x))$ we obtain that for any $x \in X$, $a \in \alpha(G'(x) \vee \rightarrow A \in \xi \vee A(x))$ and $a \in \alpha(H'(x) \vee \rightarrow A \in \xi \vee A(x))$ This shows that ξ is an α - open β_a - cover of G and H , we know that ξ has finite subfamily F_1 and F_2 such that F_1 and F_2 is a α - open Q_a - cover of G and H respectively.Hence for any $x \in X$, $a \leq G'(x) \vee \rightarrow A \in F_1 \vee A(x)$ and $a \leq H'(x) \vee \rightarrow A \in F_2 \vee A(x)$ Take $W = F_1 \cup F_2$ is a finite subfamily of ξ and it satisfies the following condition, $a \leq G'(x) \vee \rightarrow A \in W \vee A(x)$ and $a \leq H'(x) \vee \rightarrow A \in W \vee A(x)$ hence, $a \leq (G \vee H)'(x) \vee \rightarrow A \in W \vee A(x)$. This shows that W is a α - open Q_a - cover of $G \vee H$, therefore $G \vee H$ is αS^* -compact.

Theorem 3.8. *An L - fts (X, τ) is αS^* -compact if every α - closed fuzzy subset is αS^* -compact relative to X .*

Proof. For any $a \in M(L)$, suppose that $(\nu_j : j \in J)$ be an α - open β_a - cover of X . Let $j_0 \in J$, then ν'_{j_0} is α - closed and so by the hypothesis ν'_{j_0} is αS^* -compact. Now, $\xi = (\nu'_{j_0} - j_0)$ is an α - open β_a - cover of X . Since ν'_{j_0} is αS^* -compact there exists a finite subfamily ξ_0 of ξ such that ξ_0 is a α - open Q_a - cover of X . Hence X is a αS^* -compact.

Theorem 3.9. Let $(X, w_L(\tau))$ be generated topology by (X, τ) , Then χ_G is a α - open L -fuzzy set in $(X, w_L(\tau))$ if G is a α - open set in (X, τ) .

Proof. Since G is a α -open, by the definition α -open then $G \leq \text{int.cl.int}G$. Hence $\chi_G \leq \chi_{\text{int.cl.int}G} = \text{int.cl.int}\chi_G$ which implies that χ_G is a α - open L -fuzzy set in $(X, w_L(\tau))$.

Definition 3.10. Let X be a set. A prefilterbase in X is a family $\Omega \subseteq L^X$ having the following two properties:

- (i) for every $G \in \Omega$, $G \neq \phi$
- (ii) for every $G, H \in \Omega$ there is a $W \in \Omega$ such that $W \leq G \wedge H$.

Definition 3.11. Let (X, τ) be an L - fts. A prefilterbase Ω on X is said to be α - converges to $a \in M(L)$ if for every α - open L -fuzzy set G containing 'a' there exists $H \in \Omega$ such that $H \leq \text{int}G$.

Definition 3.12. Let (X, τ) be an L - fts. A prefilterbase Ω on X is said to be α - accumulates at $a \in M(L)$ if for every α - open L -fuzzy set G containing 'a' and for every $H \in \Omega$. we have $H \wedge \text{int}G \neq \phi$ such that $H \leq \text{int}G$.

Theorem 3.13. Let Ω be a maximal prefilterbase in an L - fts (X, τ) , then the following statements are equivalent:

- (i) Ω is α -accumulates at $a \in M(L)$.
- (ii) Ω is α -converges to $a \in M(L)$.

Proof. (i) \rightarrow (ii) : To prove that Ω is α -converges to $a \in M(L)$ Let G be a α -open L -fuzzy set in X such that $a \in G$. Since Ω is α -accumulates at $a \in M(L)$ then for every $H \in \Omega$, $H \wedge \text{int}G \neq \phi$ Thus there exists a proper L -fuzzy subset $C \leq H$ such that $C \leq \text{int}G$. Since $C \neq \phi$, then C is a member of some prefilterbase in X . But Ω is maximal, then C is a member of Ω . Thus for every α - open L -fuzzy set G containing a there exists $H = C \in \Omega$ such that $H \leq \text{int}G$. Then Ω is α -converges to a . (ii) \rightarrow (i) : Let G be a α - open L - fuzzy set in X such that $a \in G$. Since Ω is α -converges to a , then there exists $H \in \Omega$ such that $H \leq \text{int}G$ and thus $H \wedge \text{int}G$ is a member of some prefilterbase in X . But Ω is maximal, then $H \wedge \text{int}G \in \Omega$, So for every $H_j \in \Omega$, $H_j \wedge (H \wedge \text{int}G)$ contains a member of Ω , then $H_j \wedge G \neq \Omega$ for every $H_j \in \Omega$. Hence Ω is α - accumulates at a ,

References

- [1] Aggour A. I., On some applications of lattices, *Ph. D. Thesis, Al-Azhar Univ., Cairo, Egypt* (1998).

- [2] Azad K.K. , On fuzzy semicontinuity, fuzzy almost continuity and fuzzyweakly continuity, *J. Math. Anal. Appl.*,82 (1981) 14–32.
- [3] Balasubramanian, Ganesan, On fuzzy β -compact spaces and fuzzy β - extremally disconnected spaces, *Kybernetika [cybernetics]* 33 (1997) 271–277.
- [4] Chang C. L. Fuzzy topological spaces. *J. Math. Anal. Appl.* 24 (1986)182–190.
- [5] Fath Alla M.A. On fuzzy topological spaces,*Ph. D. Thesis, Assiut Univ.,Sohag, Egypt* (1984).
- [6] Gantner T.E.,Steinlage R.C. and Warren R.H. Compactness in fuzzy topological spaces, *J. Math. Anal. Appl.*, 62 (1978) 547–562.
- [7] Gierz G. et al, A compendium of continuous lattices, Berlin : Springer Verlag,1980.
- [8] R. Goguen, The fuzzy Tychonoff theorem, *J. Math. Anal. Appl.*, 43 (1973) 734–742.
- [9] Hanafy I.M. Fuzzy β -compactness and fuzzy β -closed spaces, *Turk J.Math.*, 28 (2004) 281293.
- [10] Hanafy I.M. β S^* -compactness in L-fuzzy topological spaces, *J. Nonlinear Sci. Appl.* 2 (2009), no. 1, 27–37.
- [11] Liu Y.M., Luo M.K. Fuzzy topology, *World Scientific, Singapore*, 1997.
- [12] Lowen R. Fuzzy topological spaces and fuzzy compactness, *J. Math. Anal. Appl.*, 56 (1976) 621–633.
- [13] Lowen R. A comparison of different compactness notions in fuzzy topological spaces, *J. Math. Anal. Appl.*, 64 (1978) 446–454.
- [14] Lowen R. Converges in fuzzy topological spaces, *General topology and its applications*,10 (1979) 147–160.
- [15] Mashhour A.S.,Ghanim M.H.and Fath Alla M.A. α -separation axioms and α - compactness in fuzzy topological spaces,*Rocky Mount J.Math.*6 (1986) 591–600.
- [16] S.E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, in: U. HOhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Dordrecht, 1999, pp. 91116.
- [17] Shi F.G. A new notion of fuzzy compactness in L-topological spaces, *Information Sciences*, 173 (2005) 35–48.
- [18] Shi F.G., Theory of L_β –nested sets and L_α –nested sets and its applications,*Fuzzy Sets and Systems*, 4 (1995) 6572. (in Chinese).

- [19] Wang G.J. Theory of L-fuzzy topological space, *Shaanxi normal University Publishers, Xian*, 1988.(in Chinese).
- [20] Wang G.J. A new fuzzy compactness defined by fuzzy nets, *J. Math. Anal. Appl.*, 94 (1983) 123.
- [21] Zhao D.S. The N-compactness in L-fuzzy topological spaces, *J. Math. Anal. Appl.*, 128 (1987) 46–70.

S. G. Dapke

Iqra's H.J.Thim College, Mehrun, Jalgaon, India

E-mail: dapkesada@yahoo.com

C. T. Aage

School of Mathematical Sciences, North Maharashtra University, Jalgaon, India

J. N. Salunke

School of Mathematical Sciences, Swami Ramanand Teerth University, Nanded, India