

Some New Generalizations and Extensions of Eneström-Kakeya Theorem

N.A.Rather*, Mushtaq A.Shah

Abstract. If $P(z) = \sum_{j=0}^n a_j z^j$, $a_j \geq a_{j-1}$, $a_0 > 0$, $j = 1, 2, \dots, n$ is a polynomial of degree n , then according to a classical result of Eneström-Kakeya, all the zeros of $P(z)$ lie in $|z| \leq 1$. In this paper, we prove some extensions and generalizations of this result.

Key Words and Phrases: Polynomial, Zeros, Eneström-Kakeya Theorem

2000 Mathematics Subject Classifications: 30C10, 30C15

1. Introduction and Statements of Results

Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n , then concerning the distribution of zeros of $P(z)$, Eneström and Kakeya [10, 11] proved the following interesting result.

Theorem A. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n such that

$$a_n \geq a_{n-1} \geq \dots \geq a_1 \geq a_0 > 0, \quad (1)$$

then $P(z)$ has all its zeros in $|z| \leq 1$.

In the literature [1-11], there exist several extensions and generalizations of this Theorem. Joyal *et al* [9] extended Theorem A to the polynomials whose coefficients are monotonic but not necessarily non-negative. In fact they proved the following result.

Theorem B. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n such that

$$a_n \geq a_{n-1} \geq \dots \geq a_1 \geq a_0,$$

then $P(z)$ has all its zeros in the disk

$$|z| \leq \frac{1}{|a_n|} (|a_n| - a_0 + |a_0|).$$

Whereas Govil and Rahman [8] extended the result to the class of polynomial with complex coefficients by proving the following interesting result.

*Corresponding author.

Theorem C. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 0 \leq j \leq n$$

and

$$|a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq |a_0|,$$

then $P(z)$ has all its zeros in the disk

$$|z| \leq (S \sin \alpha + C \cos \alpha) + \frac{2S \sin \alpha}{|a_n|} \sum_{j=0}^{n-1} |a_j|.$$

Aziz and Zargar [2] relaxed the hypothesis of Theorem A and proved the following extension of Theorem A.

Theorem D. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n such that for some $k \geq 1$,

$$k a_n \geq a_{n-1} \geq \cdots \geq a_1 \geq a_0 > 0. \quad (2)$$

then $P(z)$ has all its zeros in $|z + k - 1| \leq k$.

In this paper, we prove some generalizations and extensions of Theorem C and Theorem D and hence of the Eneström-Kakeya Theorem. In this direction we first present the following interesting result which is a generalization of Theorem C.

Theorem 1. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 0 \leq j \leq n,$$

and for $k \geq 1, 0 \leq \rho \leq 1$,

$$k|a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq \rho|a_0|,$$

then all the zeros of $P(z)$ lie in

$$\begin{aligned} |z + k - 1| &\leq \frac{1}{|a_n|} \left\{ (k|a_n| - \rho|a_0|) (S \sin \alpha + C \cos \alpha) \right. \\ &\quad \left. + (2 - \rho + 2\rho S \sin \alpha) |a_0| + 2S \sin \alpha \sum_{j=1}^{n-1} |a_j| \right\}. \end{aligned} \quad (3)$$

Remark 1. For $\rho = 1, k = 1$, Theorem 1 reduces to Theorem C. Taking $\rho = 1$, in Theorem 1, we get the following result.

Corollary 1. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad j = 0, 1, 2, \dots, n$$

and for $k \geq 1$,

$$k|a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq |a_0|,$$

then all the zeros of $P(z)$ lie in

$$|z + k - 1| \leq \frac{1}{|a_n|} \left\{ (k|a_n| - |a_0|) (Sin\alpha + Cos\alpha) + |a_0| + 2Sin\alpha \sum_{j=0}^{n-1} |a_j| \right\}. \quad (4)$$

Also by taking $k = 1$, in Theorem 1, we get the following generalization of Theorem C.

Corollary 2. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 0 \leq j \leq n,$$

and for $0 \leq \rho \leq 1$,

$$|a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq \rho|a_0|,$$

then all the zeros of $P(z)$ lie in

$$|z| \leq \frac{1}{|a_n|} \left\{ (|a_n| - \rho|a_0|) (Sin\alpha + Cos\alpha) + (2 - \rho + 2\rho Sin\alpha) |a_0| + 2Sin\alpha \sum_{j=1}^{n-1} |a_j| \right\}. \quad (5)$$

If we take $k = \frac{|a_{n-1}|}{|a_n|} \geq 1$ in Corollary 1, we obtain the following result.

Corollary 3. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad j = 0, 1, \dots, n$$

and

$$|a_n| \leq |a_{n-1}| \leq \cdots \leq |a_1| \leq |a_0|,$$

then all the zeros of $P(z)$ lie in

$$\left| z + \frac{|a_{n-1}|}{|a_n|} - 1 \right| \leq \frac{1}{|a_n|} \left\{ (|a_{n-1}| - |a_0|) (Sin\alpha + Cos\alpha) + |a_0| + 2Sin\alpha \sum_{j=0}^{n-1} |a_j| \right\}.$$

Next we present the following result which is also a generalization of Theorem C.

Theorem 2. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 0 \leq j \leq n-1,$$

$$|\arg(\lambda + a_n) - \beta| \leq \alpha \leq \frac{\pi}{2}$$

and

$$|\lambda + a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq |a_0|,$$

then for every real or complex number λ , all the zeros of $P(z)$ lie in the disk

$$|z + \frac{\lambda}{a_n}| \leq \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0|) (Sin\alpha + Cos\alpha) + |a_0| + 2Sin\alpha \sum_{j=0}^{n-1} |a_j| \right\}. \quad (6)$$

Remark 2. For $\lambda = 0$, Theorem 1 reduces to Theorem C and for $\lambda = (k-1)|a_n|$, $k \geq 1$, it reduces to Corollary 1.

Applying Theorem 2 to the polynomial $P(tz)$, we obtain the following result.

Corollary 4. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 0 \leq j \leq n-1,$$

$$|\arg(\lambda + a_n) - \beta| \leq \alpha \leq \frac{\pi}{2}$$

and for some $\lambda > 0, t > 0$

$$\lambda + t^n |a_n| \geq t^{n-1} |a_{n-1}| \geq \cdots \geq t |a_1| \geq |a_0|,$$

then $P(z)$ has all its zeros in the disk

$$\begin{aligned} |z + \frac{\lambda}{t^{n-1} a_n}| &\leq \frac{t}{|a_n|} \left\{ \left| \frac{\lambda}{t^n} + a_n - \frac{a_{n-1}}{t} \right| + \left(\frac{|a_{n-1}|}{t} - \frac{|a_0|}{t^n} \right) (Sin\alpha + Cos\alpha) \right. \\ &\quad \left. + \frac{|a_0|}{t^n} + 2Sin\alpha \sum_{j=0}^{n-2} |a_j| t^{j-n} \right\}. \end{aligned}$$

Instead of proving Theorem 2, we prove the following more generalization.

Theorem 3. Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some real β ,

$$|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad 1 \leq j \leq n-1,$$

$$|\arg(\lambda + a_n) - \beta| \leq \alpha \leq \frac{\pi}{2}, \quad |\arg(a_0 - \mu) - \beta| \leq \alpha \leq \frac{\pi}{2}$$

and

$$|\lambda + a_n| \geq |a_{n-1}| \geq \cdots \geq |a_1| \geq |a_0 - \mu|,$$

then for every real or complex numbers λ and μ , all the zeros of $P(z)$ lie in the disk

$$|z + \frac{\lambda}{a_n}| \leq \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0 - \mu|) (Sin\alpha + Cos\alpha) + |a_0| \right\} \quad (7)$$

$$+ |\mu| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| + 2|a_0 - \mu| \sin\alpha \Bigg\}.$$

Remark 3. For $\mu = 0$, Theorem 3 reduces to Theorem 2.

2. Lemma

For the proofs of these theorems, we need the following result due to Govil and Rahaman[8].

Lemma. If $|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2}$, and for some $t > 0$, $|ta_j| \geq |a_{j-1}|$, then

$$|ta_j - a_{j-1}| \leq \{(|ta_j| - |a_{j-1}|) \cos\alpha + (|ta_j| + |a_{j-1}|) \sin\alpha\}.$$

3. Proofs of the Theorems

Proof of Theorem 1. Consider the polynomial

$$\begin{aligned} F(z) &= (1-z)P(z) \\ &= (1-z)(a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0) \\ &= a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 - a_n z^{n+1} - a_{n-1} z^n - \cdots - a_0 z \\ &= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} + \cdots + (a_1 - a_0) z + a_0 \\ &= -a_n z^n (z + k - 1) + (ka_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} \\ &\quad + \cdots + (a_1 - \rho a_0) z + (\rho - 1) a_0 z + a_0. \end{aligned}$$

This gives

$$\begin{aligned} |F(z)| &\geq |z|^n \left\{ (|a_n| |z + k - 1|) - \left(|ka_n - a_{n-1}| |z|^n \right. \right. \\ &\quad \left. \left. + \cdots + |a_1 - \rho a_0| |z| + |\rho - 1| |a_0| |z| + |a_0| \right) \right\} \\ &= |z|^n \left\{ (|a_n| |z + k - 1|) - \left(|ka_n - a_{n-1}| + \frac{|a_{n-1} - a_{n-2}|}{|z|} \right. \right. \\ &\quad \left. \left. + \cdots + \frac{|a_1 - \rho a_0|}{|z|^{n-1}} + \frac{(1 - \rho) |a_0|}{|z|^{n-1}} + \frac{|a_0|}{|z|^n} \right) \right\}. \end{aligned}$$

Now, let $|z| \geq 1$, so that $\frac{1}{|z|^{n-j}} \leq 1$, $0 \leq j \leq n$, then we have

$$|F(z)| > |z|^n \left\{ |a_n| |z + k - 1| - \left(|ka_n - a_{n-1}| + |a_{n-1} - a_{n-2}| \right. \right.$$

$$+ \dots + |a_1 - \rho a_0| + (1 - \rho)|a_0| + |a_0| \Bigg) \Bigg\}.$$

Using Lemma, we get

$$\begin{aligned} |F(z)| &> |z|^n \left\{ |a_n| |z + k - 1| - \left((k|a_n| - \rho|a_0|) (\sin\alpha + \cos\alpha) \right. \right. \\ &\quad \left. \left. + (2 - \rho + 2\rho\sin\alpha)|a_0| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| \right) \right\}. \end{aligned}$$

> 0 , if

$$|z + k - 1| > \frac{1}{|a_n|} \left\{ (k|a_n| - \rho|a_0|) (\sin\alpha + \cos\alpha) + (2 - \rho + 2\rho\sin\alpha)|a_0| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| \right\}$$

Thus all the zeros of $F(z)$ whose modulus is greater than or equal to 1 lie in

$$|z + k - 1| \leq \frac{1}{|a_n|} \left\{ (k|a_n| - \rho|a_0|) (\sin\alpha + \cos\alpha) + (2 - \rho + 2\rho\sin\alpha)|a_0| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| \right\}$$

But those zeros of $F(z)$ whose modulus is less than 1 already satisfy the above inequality. Hence it follows that all the zeros of $F(z)$ lie in

$$|z + k - 1| \leq \frac{1}{|a_n|} \left\{ (k|a_n| - \rho|a_0|) (\sin\alpha + \cos\alpha) + (2 - \rho + 2\rho\sin\alpha)|a_0| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| \right\}$$

Since all the zeros of $P(z)$ are also the zeros of $F(z)$, we conclude that all the zeros of $P(z)$ lie in the disk

$$|z + k - 1| \leq \frac{1}{|a_n|} \left\{ (k|a_n| - \rho|a_0|) (\sin\alpha + \cos\alpha) + (2 - \rho + 2\rho\sin\alpha)|a_0| + 2\sin\alpha \sum_{j=1}^{n-1} |a_j| \right\}$$

This completes the proof of Theorem 1.

Proof of Theorem 3. Consider the polynomial

$$\begin{aligned} F(z) &= (1 - z)P(z) \\ &= (1 - z)(a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0) \\ &= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 - a_n z^{n+1} - a_{n-1} z^n - \dots - a_0 z \\ &= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} + \dots + (a_1 - a_0) z + a_0 \\ &= -(a_n z + \lambda) z^n + (a_n + \lambda - a_{n-1}) z^n \\ &\quad + (a_{n-1} - a_{n-2}) z^{n-1} + \dots + (a_1 - a_0 + \mu) z - \mu z + a_0. \end{aligned}$$

This gives

$$\begin{aligned}
|F(z)| &\geq |z|^n \left\{ |a_n z + \lambda| - \left(|a_n + \lambda - a_{n-1}| |z|^n + |a_{n-1} - a_{n-2}| |z|^{n-1} \right. \right. \\
&\quad \left. \left. + \cdots + |a_1 - a_0 + \mu| |z| + \mu |z| + |a_0| \right) \right\} \\
&= |z|^n \left\{ |a_n z + \lambda| - \left(|a_n + \lambda - a_{n-1}| + \frac{|a_{n-1} - a_{n-2}|}{|z|} \right. \right. \\
&\quad \left. \left. + \cdots + \frac{|a_1 - a_0 + \mu|}{|z|^{n-1}} + \frac{\mu}{|z|^{n-1}} + \frac{|a_0|}{|z|^n} \right) \right\}.
\end{aligned}$$

Now, let $|z| \geq 1$, so that $\frac{1}{|z|^{n-j}} \leq 1, 0 \leq j \leq n$, then we have

$$\begin{aligned}
|F(z)| > |z|^n \left[|a_n z + \lambda| - \left\{ |a_n + \lambda - a_{n-1}| + |a_{n-1} - a_{n-2}| \right. \right. \\
&\quad \left. \left. + \cdots + |a_1 - (a_0 - \mu)| + \mu + |a_0| \right\} \right].
\end{aligned}$$

Using Lemma, we get

$$\begin{aligned}
|F(z)| \geq |z|^n \left\{ |a_n z + \lambda| - \left((|\lambda + a_n| - |a_0 - \mu|) (\cos \alpha + \sin \alpha) + |a_0| \right. \right. \\
&\quad \left. \left. + |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \right) \right\}.
\end{aligned}$$

> 0 , if

$$\begin{aligned}
|a_n z + \lambda| &> \left\{ (|\lambda + a_n| - |a_0 - \mu|) (\cos \alpha + \sin \alpha) + |a_0| \right. \\
&\quad \left. + |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \right\}.
\end{aligned}$$

i.e, if

$$\begin{aligned}
\left| z + \frac{\lambda}{a_n} \right| &> \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0 - \mu|) (\cos \alpha + \sin \alpha) + |a_0| \right. \\
&\quad \left. + |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \right\}.
\end{aligned}$$

Thus all the zeros of $F(z)$ whose modulus is greater than or equal to 1 lie in

$$\left| z + \frac{\lambda}{a_n} \right| \leq \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0 - \mu|) (\cos \alpha + \sin \alpha) + |a_0| \right.$$

$$+ |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \Big\}.$$

But those zeros of $F(z)$ whose modulus is less than 1 already satisfy the above inequality. Hence it follows that all the zeros of $F(z)$ lie in

$$\begin{aligned} \left| z + \frac{\lambda}{a_n} \right| &\leq \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0 - \mu|) (C \cos \alpha + S \sin \alpha) + |a_0| \right. \\ &\quad \left. + |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \right\}. \end{aligned}$$

Since all the zeros of $P(z)$ are also the zeros of $F(z)$, we conclude that all the zeros of $P(z)$ lie in the disk

$$\begin{aligned} \left| z + \frac{\lambda}{a_n} \right| &\leq \frac{1}{|a_n|} \left\{ (|\lambda + a_n| - |a_0 - \mu|) (C \cos \alpha + S \sin \alpha) + |a_0| \right. \\ &\quad \left. + |\mu| + 2|a_0 - \mu| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{n-1} |a_j| \right\}. \end{aligned}$$

This completes the proof of Theorem 3.

References

- [1] N. Anderson, E.B.Saff and R.S.Verga, *An Extension of Enestrom-Kakeya Theorem and its Sharpness*, SIAM. Math. Anal, 12(1981), 10-22.
- [2] A.Aziz and B.A.Zargar, *Some Extensions of Enestrom-Kakeya Theorem*, GlasnikMatematiki, 31(1996), 239-244.
- [3] A.Aziz and B.A.Zargar, *Bounds for the Zeros of a Polynomial with Restricted Coefficients*, Applied Mathematics, Scientific Research Publications, 3(2012),30 - 33.
- [4] K.K.Dewan and N.K.Govil, *On the Enestrom-Kakeya Theorem*, J.Approx.Theory, 42(1984), 239-244.
- [5] K.K.Dewan and M.Bidkham, *On the Enestrom-Kakeya Theorem*, J.Math.Anal.Appl. 180 (1993), 29-36.
- [6] R.B.Gardener and N.K.Govil, *Some Generalizations of the Enestrom-Kakeya Theorem*, Acta Math.Hungar,4(1997),125-134.
- [7] N.K.Govil and G.N.Mctume, *Some Extensions of Enestrom-Kakeya Theorem*,Int.J.Appl. Math., Vol 11, No.3(2002), 245-253.

- [8] N.K.Govil and Q.I.Rahman, *On the Enestrom-Kakeya Theorem*, Tohoku Math.J., 20(1968), 126-136.
- [9] A.Joyal, G.Labelle and Q.I.Rahman, *On the Location of Zeros of polynomials*, Canadian Math. Bull, 10(1967), 55-63.
- [10] M.Marden, *Geometry of polynomials*, Math.Surveys, No. 3, Amer.Math.Soc.Providence, RI 1949.
- [11] G.V.Milovanovic,D.S.Mitrinovic and Th.M.Rassias, *Topics in Polynomials: Extremal Properties, Inequalities, Zeros*, World scientific Publishing Co., Singapore,(1994).

N.A.Rather

P.G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar-190006, India
E-mail: dr.narather@gmail.com

Mushtaq A.Shah

P.G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar-190006, India
E-mail: mushtaq022@gmail.com

Received 9 October 2012

Published 6 November 2012