

Integral Mean Estimates for the Polar Derivative of a Polynomials

N. A. Rather*, Suhail Gulzar

Abstract. Let $P(z)$ be a polynomial of degree n having all zeros in $|z| \leq k$ where $k \leq 1$, then it was proved by Dewan *et al* [6] that for every real or complex number α with $|\alpha| \geq k$ and each $r \geq 0$

$$n(|\alpha| - k) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^r d\theta \right\}^{\frac{1}{r}} \max_{|z|=1} |D_\alpha P(z)|.$$

In this paper, we shall present a generalization of above result and also extend it to the class of polynomials $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, having all its zeros in $|z| \leq k$ where $k \leq 1$ and thereby obtain certain generalizations of above and many other known results.

Key Words and Phrases: Polynomials; Polar derivatives; Integral mean estimates. Bernstein's inequality.

2000 Mathematics Subject Classifications: 30A10, 30C10, 30E10, 30C15

1. Introduction and statement of results

Let $P(z)$ be a polynomial of degree n . It was shown by Turán [12] that if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$n \max_{|z|=1} |P(z)| \leq 2 \max_{|z|=1} |P'(z)|. \quad (1)$$

Inequality (1) is best possible with equality holds for $P(z) = \alpha z^n + \beta$ where $|\alpha| = |\beta|$. The above inequality (1) of Turán [12] was generalized by Malik [10], who proved that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{1+k} \max_{|z|=1} |P(z)|. \quad (2)$$

where as for $k \geq 1$, Govil [7] showed that

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{1+k^n} \max_{|z|=1} |P(z)|, \quad (3)$$

*Corresponding author.

Both the above inequalities (2) and (3) are best possible, with equality in (2) holding for $P(z) = (z + k)^n$, where $k \geq 1$. While in (3) the equality holds for the polynomial $P(z) = \alpha z^n + \beta k^n$ where $|\alpha| = |\beta|$.

As a refinement of (2), Aziz and Shah [4] proved if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{1+k} \left\{ \max_{|z|=1} |P(z)| + \frac{1}{k^{n-1}} \min_{|z|=1} |P(z)| \right\}. \quad (4)$$

Let $D_\alpha P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree n with respect to the point α , then

$$D_\alpha P(z) = nP(z) + (\alpha - z)P'(z).$$

The polynomial $D_\alpha P(z)$ is a polynomial of degree at most $n - 1$ and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \rightarrow \infty} \left[\frac{D_\alpha P(z)}{\alpha} \right] = P'(z).$$

Aziz and Rather [2] extends (2) to polar derivatives of a polynomial and proved that if all the zeros of $P(z)$ lie in $|z| \leq k$ where $k \leq 1$ then for every real or complex number α with $|\alpha| \geq k$,

$$\max_{|z|=1} |D_\alpha P(z)| \geq n \left(\frac{|\alpha| - k}{1+k} \right) \max_{|z|=1} |P(z)|. \quad (5)$$

For the class of polynomials $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, of degree n having all its zeros in $|z| \leq k$ where $k \leq 1$, Aziz and Rather [3] proved that if α is real or complex number with $|\alpha| \geq k^\mu$ then

$$\max_{|z|=1} |D_\alpha P(z)| \geq n \left(\frac{|\alpha| - k^\mu}{1+k^\mu} \right) \max_{|z|=1} |P(z)|. \quad (6)$$

Malik [11] obtained a generalization of (1) in the sense that the left-hand side of (1) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z| = 1$. In fact he proved that if $P(z)$ has all its zeros in $|z| \leq 1$, then for each $q > 0$,

$$n \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^q d\theta \right\}^{1/q} \leq \left\{ \int_0^{2\pi} \left| 1 + e^{i\theta} \right|^q d\theta \right\}^{1/q} \max_{|z|=1} |P'(z)|. \quad (7)$$

If we let q tend to infinity in (7), we get (1).

The corresponding generalization of (2) which is an extension of (7) was obtained by Aziz [1] by proving that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \geq 1$, then for each $q \geq 1$

$$n \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^q d\theta \right\}^{1/q} \leq \left\{ \int_0^{2\pi} \left| 1 + k^n e^{i\theta} \right|^q d\theta \right\}^{1/q} \max_{|z|=1} |P'(z)|. \quad (8)$$

The result is best possible and equality in (5) holds for the polynomial $P(z) = \alpha z^n + \beta k^n$ where $|\alpha| = |\beta|$.

As a generalization of inequality 5, Dewan *et al* [6] obtained an L^p inequality for the polar derivative of a polynomial and proved the following:

Theorem 1. *If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$ and for each $r > 0$,*

$$n(|\alpha| - k) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} \left| 1 + ke^{i\theta} \right|^r d\theta \right\}^{\frac{1}{r}} \max_{|z|=1} |D_\alpha P(z)|. \quad (9)$$

In this paper, we consider the class of polynomials $P(z) = a_n z^n + \sum_{j=\mu}^n a_{n-j} z^{n-j}$, $1 \leq \mu \leq n$, having all its zeros in $|z| \leq k$ where $k \leq 1$ and establish some improvements and generalizations of inequalities (1),(2),(5),(8) and (9).

In this direction, we first present the following interesting results which yields (9) as a special case.

Theorem 2. *If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex α, β with $|\alpha| \geq k$, $|\beta| \leq 1$ and for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n(|\alpha| - k) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}} \quad (10)$$

where $m = \min_{|z|=k} |P(z)|$.

If we take $\beta = 0$, we get the following result.

Corollary 1. *If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex α , with $|\alpha| \geq k$ and for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n(|\alpha| - k) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}. \quad (11)$$

Remark 1. Theorem 1 follows from (11) by letting $q \rightarrow \infty$ (so that $p \rightarrow 1$) in Corollary 1. If we divide both sides of inequality (11) by $|\alpha|$ and make $\alpha \rightarrow \infty$, we get (5).

Dividing the two sides of (10) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get the following result.

Corollary 2. *If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex β with $|\beta| \leq 1$ and for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |P'(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}} \quad (12)$$

where $m = \min_{|z|=k} |P(z)|$.

If we let $q \rightarrow \infty$ in (12), we get the following corollary.

Corollary 3. *If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex β with $|\beta| \leq 1$ and for each $r > 0$, we have*

$$n \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^r d\theta \right\}^{\frac{1}{r}} \max_{|z|=1} |P'(z)|, \quad (13)$$

where $m = \min_{|z|=k} |P(z)|$.

Remark 2. If we let $r \rightarrow \infty$ in (13) and choosing argument of β suitably with $|\beta| = 1$, we obtain (4).

Next, we extend (9) to the class of polynomials $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, having all its zeros in $|z| \leq k$, $k \leq 1$ and thereby obtain the following result.

Theorem 3. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \leq 1$, then for every real or complex α with $|\alpha| \geq k^\mu$ and for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}. \quad (14)$$

Remark 3. We let $r \rightarrow \infty$ and $p \rightarrow \infty$ (so that $q \rightarrow 1$) in (14), we get inequality (6).

If we divide both sides of (14) by $|\alpha|$ and make $\alpha \rightarrow \infty$, we get the following result.

Corollary 4. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \leq 1$, then for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n \left\{ \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |P'(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}. \quad (15)$$

Letting $q \rightarrow \infty$ (so that $p \rightarrow 1$) in (14), we get the following result:

Corollary 5. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, where $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^\mu$ and for each $r > 0$,*

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} \left| 1 + k^\mu e^{i\theta} \right|^r d\theta \right\}^{\frac{1}{r}} \underset{|z|=1}{\text{Max}} |D_\alpha P(z)|. \quad (16)$$

As a generalization of Theorem 3, we present the following result:

Theorem 4. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$ where $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \leq 1$, then for every real or complex α with $|\alpha| \geq k^\mu$ and for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} |P(e^{i\theta}) + \beta m|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}} \quad (17)$$

where $m = \underset{|z|=k}{\text{Min}} |P(z)|$.

If we divide both sides by $|\alpha|$ and make $\alpha \rightarrow \infty$, we get the following result:

Corollary 6. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$ where $k \leq 1$, then for each $r > 0$, $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$, we have*

$$n \left\{ \int_0^{2\pi} |P(e^{i\theta}) + \beta m|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |P'(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}} \quad (18)$$

where $m = \underset{|z|=k}{\text{Min}} |P(z)|$.

Letting $q \rightarrow \infty$ (so that $p \rightarrow 1$) in (14), we get the following result:

Corollary 7. *If $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$ where $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^\mu$ and for each $r > 0$,*

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) + \beta m \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} \left| 1 + k^\mu e^{i\theta} \right|^r d\theta \right\}^{\frac{1}{r}} \underset{|z|=1}{\text{Max}} |D_\alpha P(z)| \quad (19)$$

where $m = \underset{|z|=k}{\text{Min}} |P(z)|$.

2. Lemmas

For the proofs of the theorems, we need the following Lemmas:

Lemma 1. *If $P(z)$ is a polynomial of degree almost n having all its zeros in $|z| \leq k$ $k \leq 1$ then for $|z| = 1$,*

$$|Q'(z)| + \frac{nm}{k^{n-1}} \leq k|P'(z)|, \quad (20)$$

where $Q(z) = z^n \overline{P(1/\bar{z})}$ and $m = \min_{|z|=k} |P(z)|$.

The above Lemma is due to Govil and McTume [8].

Lemma 2. *Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n , which does not vanish for $|z| < k$, where $k \geq 1$ then for $|z| = 1$,*

$$k^\mu |P'(z)| \leq |Q'(z)|, \quad (21)$$

where $Q(z) = z^n \overline{P(1/\bar{z})}$.

The above Lemma is due to Chan and Malik [5]. By applying Lemma 2 to the polynomial $z^n \overline{P(1/\bar{z})}$, one can easily deduce:

Lemma 3. *Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n , having all its zeros in $|z| \leq k$, where $k \leq 1$ then for $|z| = 1$*

$$k^\mu |P'(z)| \geq |Q'(z)|, \quad (22)$$

where $Q(z) = z^n \overline{P(1/\bar{z})}$.

3. Proof of Theorems

Proof. [Proof of Theorem 2] Let $Q(z) = z^n \overline{P(1/\bar{z})}$ then $P(z) = z^n \overline{Q(1/\bar{z})}$ and it can be easily verified that for $|z| = 1$,

$$|Q'(z)| = |nP(z) - zP'(z)| \quad \text{and} \quad |P'(z)| = |nQ(z) - zQ'(z)|. \quad (23)$$

By Lemma (1), we have for every β with $|\beta| \leq 1$ and $|z| = 1$,

$$\left| Q'(z) + \bar{\beta} \frac{nmz^{n-1}}{k^{n-1}} \right| \leq |Q'(z)| + \frac{nm}{k^{n-1}} \leq k|P'(z)|. \quad (24)$$

Using (23) in (24), for $|z| = 1$ we have

$$\left| Q'(z) + \bar{\beta} \frac{nmz^{n-1}}{k^{n-1}} \right| \leq k|nQ(z) - zQ'(z)|. \quad (25)$$

By Lemma 3 with $\mu = 1$, for every real or complex number α with $|\alpha| \geq k$ and $|z| = 1$, we have

$$\begin{aligned} |D_\alpha P(z)| &\geq |\alpha| |P'(z)| - |Q'(z)| \\ &\geq (|\alpha| - k) |P'(z)|. \end{aligned} \quad (26)$$

Since $P(z)$ has all its zeros in $|z| \leq k \leq 1$, it follows by Gauss-Lucas Theorem that all the zeros of $P'(z)$ also lie in $|z| \leq k \leq 1$. This implies that the polynomial

$$z^{n-1} \overline{P'(1/\bar{z})} \equiv nQ(z) - zQ'(z)$$

does not vanish in $|z| < 1$. Therefore, it follows from (25) that the function

$$w(z) = \frac{z \left(Q'(z) + \bar{\beta} \frac{nmz^{n-1}}{k^{n-1}} \right)}{k(nQ(z) - zQ'(z))}$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| = 1$. Furthermore, $w(0) = 0$. Thus the function $1 + kw(z)$ is subordinate to the function $1 + kz$ for $|z| \leq 1$. Hence by a well known property of subordination [9], we have

$$\int_0^{2\pi} \left| 1 + kw(e^{i\theta}) \right|^r d\theta \leq \int_0^{2\pi} \left| 1 + ke^{i\theta} \right|^r d\theta, \quad r > 0. \quad (27)$$

Now

$$1 + kw(z) = \frac{n \left(Q(z) + \bar{\beta} \frac{mz^n}{k^{n-1}} \right)}{nQ(z) - zQ'(z)},$$

and

$$|P'(z)| = |z^{n-1} \overline{P'(1/\bar{z})}| = |nQ(z) - zQ'(z)|, \quad \text{for } |z| = 1,$$

therefore for $|z| = 1$,

$$n \left| Q(z) + \bar{\beta} \frac{mz^n}{k^{n-1}} \right| = |1 + kw(z)| |nQ(z) - zQ'(z)| = |1 + kw(z)| |P'(z)|.$$

equivalently,

$$n \left| z^n \overline{P'(1/\bar{z})} + \bar{\beta} \frac{mz^n}{k^{n-1}} \right| = |1 + kw(z)| |P'(z)|.$$

This implies

$$n \left| P(z) + \beta \frac{m}{k^{n-1}} \right| = |1 + kw(z)| |P'(z)| \quad \text{for } |z| = 1. \quad (28)$$

From (25) and (28), we deduce that for $q > 0$,

$$n^r(|\alpha| - k)^r \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \leq \int_0^{2\pi} |1 + kw(e^{i\theta})|^r |D_\alpha P(e^{i\theta})|^r d\theta.$$

This gives with the help of Hölder's inequality and using (27), for $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$,

$$n^r(|\alpha| - k)^r \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \leq \left(\int_0^{2\pi} |1 + ke^{i\theta}|^{pr} d\theta \right)^{1/p} \left(\int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right)^{1/q},$$

equivalently,

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) + \beta \frac{m}{k^{n-1}} \right|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + ke^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}$$

which proves the desired result.

Proof. [Proof of Theorem 3] Since $P(z)$ has all its zeros in $|z| \leq k$, therefore, by using Lemma 3 we have for $|z| = 1$,

$$|Q'(z)| \leq k^\mu |nQ(z) - zQ'(z)|. \quad (29)$$

Now for every real or complex number α with $|\alpha| \geq k^\mu$, we have

$$\begin{aligned} |D_\alpha P(z)| &= |nP(z) + (\alpha - z)P'(z)| \\ &\geq |\alpha||P'(z)| - |nP(z) - zP'(z)|, \end{aligned}$$

by using (23) and Lemma 3, for $|z| = 1$, we get

$$\begin{aligned} |D_\alpha P(z)| &\geq |\alpha||P'(z)| - |Q'(z)| \\ &\geq (|\alpha| - k^\mu)|P'(z)|. \end{aligned} \quad (30)$$

Since $P(z)$ has all its zeros in $|z| \leq k \leq 1$, it follows by Gauss-Lucas Theorem that all the zeros of $P'(z)$ also lie in $|z| \leq k \leq 1$. This implies that the polynomial

$$z^{n-1} \overline{P'(1/\bar{z})} \equiv nQ(z) - zQ'(z)$$

does not vanish in $|z| < 1$. Therefore, it follows from (29) that the function

$$w(z) = \frac{zQ'(z)}{k^\mu (nQ(z) - zQ'(z))}$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| = 1$. Furthermore, $w(0) = 0$. Thus the function $1 + k^\mu w(z)$ is subordinate to the function $1 + k^\mu z$ for $|z| \leq 1$. Hence by a well known property of subordination [9], we have

$$\int_0^{2\pi} \left| 1 + k^\mu w(e^{i\theta}) \right|^r d\theta \leq \int_0^{2\pi} \left| 1 + k^\mu e^{i\theta} \right|^r d\theta, \quad r > 0. \quad (31)$$

Now

$$1 + k^\mu w(z) = \frac{nQ(z)}{nQ(z) - zQ'(z)},$$

and

$$|P'(z)| = |z^{n-1} \overline{P'(1/\bar{z})}| = |nQ(z) - zQ'(z)|, \quad \text{for } |z| = 1,$$

therefore, for $|z| = 1$,

$$n|Q(z)| = |1 + k^\mu w(z)||nQ(z) - zQ'(z)| = |1 + k^\mu w(z)||P'(z)|. \quad (32)$$

From (30) and (32), we deduce that for $r > 0$,

$$n^r (|\alpha| - k^\mu)^r \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \leq \int_0^{2\pi} |1 + k^\mu w(e^{i\theta})|^r |D_\alpha P(e^{i\theta})|^r d\theta.$$

This gives with the help of Hölder's inequality and (31), for $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$,

$$n^r (|\alpha| - k^\mu)^r \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \leq \left(\int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right)^{1/p} \left(\int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right)^{1/q},$$

equivalently,

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} |P(e^{i\theta})|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}$$

which proves the desired result.

Proof. [Proof of Theorem 4] Let $m = \min_{|z|=k} |P(z)|$, so that $m \leq |P(z)|$ for $|z| = k$. If $P(z)$ has a zero on $|z| = k$ then $m = 0$ and result follows from Theorem 3. Henceforth we suppose that all the zeros of $P(z)$ lie in $|z| < k$. Therefore for every β with $|\beta| < 1$, we have $|m\beta| < |P(z)|$ for $|z| = k$. Since $P(z)$ has all its zeros in $|z| < k \leq 1$, it follows by Rouche's theorem that all the zeros of $F(z) = P(z) + \beta m$ lie in $|z| < k \leq 1$. If $G(z) = z^n \overline{F(1/\bar{z})} = Q(z) + \bar{\beta} m z^n$, then by applying Lemma 3 to polynomial $F(z) = P(z) + \beta m$, we have for $|z| = 1$,

$$|G'(z)| \leq k^\mu |F'(z)|.$$

This gives

$$|Q'(z) + nm\bar{\beta}z^{n-1}| \leq k^\mu |P'(z)|. \quad (33)$$

Using (23) in (33), for $|z| = 1$ we have

$$|Q'(z) + nm\bar{\beta}z^{n-1}| \leq k^\mu |nQ(z) - zQ'(z)| \quad (34)$$

Since $P(z)$ has all its zeros in $|z| < k \leq 1$, it follows by Gauss-Lucas Theorem that all the zeros of $P'(z)$ also lie in $|z| < k \leq 1$. This implies that the polynomial

$$z^{n-1} \overline{P'(1/\bar{z})} \equiv nQ(z) - zQ'(z)$$

does not vanish in $|z| < 1$. Therefore, it follows from (34) that the function

$$w(z) = \frac{z(Q'(z) + nm\bar{\beta}z^{n-1})}{k^\mu (nQ(z) - zQ'(z))}$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| = 1$. Furthermore, $w(0) = 0$. Thus the function $1 + k^\mu w(z)$ is subordinate to the function $1 + k^\mu z$ for $|z| \leq 1$. Hence by a well known property of subordination [9], we have

$$\int_0^{2\pi} \left| 1 + k^\mu w(e^{i\theta}) \right|^r d\theta \leq \int_0^{2\pi} \left| 1 + k^\mu e^{i\theta} \right|^r d\theta, \quad r > 0. \quad (35)$$

Now

$$1 + k^\mu w(z) = \frac{n(Q(z) + m\bar{\beta}z^n)}{nQ(z) - zQ'(z)},$$

and

$$|P'(z)| = |z^{n-1} \overline{P'(1/\bar{z})}| = |nQ(z) - zQ'(z)|, \quad \text{for } |z| = 1,$$

therefore, for $|z| = 1$,

$$n|Q(z) + m\bar{\beta}z^n| = |1 + k^\mu w(z)||nQ(z) - zQ'(z)| = |1 + k^\mu w(z)||P'(z)|.$$

This implies

$$n|G(z)| = |1 + k^\mu w(z)||nQ(z) - zQ'(z)| = |1 + k^\mu w(z)||P'(z)|. \quad (36)$$

Since $|F(z)| = |G(z)|$ for $|z| = 1$, therefore, from (36) we get

$$n|P(z) + \beta m| = |1 + k^\mu w(z)||P'(z)| \quad \text{for } |z| = 1. \quad (37)$$

From (30) and (37), we deduce that for $r > 0$,

$$n^r (|\alpha| - k^\mu)^r \int_0^{2\pi} |P(e^{i\theta}) + \beta m|^r d\theta \leq \int_0^{2\pi} |1 + k^\mu w(e^{i\theta})|^r |D_\alpha P(e^{i\theta})|^r d\theta.$$

This gives with the help of Hölder's inequality in conjunction with (35) for $p > 1$, $q > 1$ with $p^{-1} + q^{-1} = 1$,

$$n^r(|\alpha| - k^\mu)^r \int_0^{2\pi} |P(e^{i\theta}) + \beta m|^r d\theta \leq \left(\int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right)^{1/p} \left(\int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right)^{1/q},$$

equivalently,

$$n(|\alpha| - k^\mu) \left\{ \int_0^{2\pi} |P(e^{i\theta}) + \beta m|^r d\theta \right\}^{\frac{1}{r}} \leq \left\{ \int_0^{2\pi} |1 + k^\mu e^{i\theta}|^{pr} d\theta \right\}^{\frac{1}{pr}} \left\{ \int_0^{2\pi} |D_\alpha P(e^{i\theta})|^{qr} d\theta \right\}^{\frac{1}{qr}}$$

which proves the desired result.

References

- [1] A. Aziz, Integral mean estimates polynomials with restricted zeros, *J. Approx. Theory* 55 (1988), 232-239.
- [2] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials. *Math Ineq Appl.* 1, 231238 (1998).
- [3] A. Aziz and N. A. Rather, Inequalities for the polar derivative of a polynomial with restricted zeros, *Mathematica Balkana*, 17 (2003), 15-28.
- [4] A. Aziz and W. M. Shah, An integral mean estimate for polynomial, *Indian J. Pure and Appl. Math.*, 28 (1997) 1413-1419.
- [5] T. N. Chan and M. A. Malik, On Erdös-Lax theorem, *Proc. Indian. Acad. Sci.*, 92 (1983), 191-193.
- [6] K. K. Dewan et al., Some inequalities for the polar derivative of a polynomial, *South-east Asian Bull. Math.*, 34 (2010), 69-77.
- [7] N. K. Govil, On the derivative of a polynomial, *Proc. Amer. Math. Soc.* 41 (1973), 543-546.
- [8] N. K. Govil and G. N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turán, *Acta Math. Hungar.*, 104 (2004) 115-126.
- [9] E. Hille, *Analytic function theory*, Vol. II, Ginn and Company, New York, Toronto, 1962.
- [10] M. A. Malik, On the derivative of a polynomial, *J. Lond. Math. Soc.*, Second Series 1 (1969), 57-60.

- [11] M. A. Malik, An integral mean estimates for polynomials, *Proc. Amer. Math. Soc.*, 91 (1984), 281-284.
- [12] P. Turan, Uber die Ableitung von Polynomen, *Compositio Mathematica* 7 (1939), 89-95 (German).

N. A. Rather

Department of Mathematics University of Kashmir Srinagar, Hazratbal 190006 India.

E-mail: dr.narather@gmail.com

Suhail Gulzar

Department of Mathematics University of Kashmir Srinagar, Hazratbal 190006 India.

E-mail: sgmattoo@gmail.com

Received 11 September 2012

Published 22 October 2012