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Integral Mean Estimates for the Polar Derivative of a
Polynomials

N. A. Rather*, Suhail Gulzar

Abstract. Let P(z) be a polynomial of degree n having all zeros in |z| < k where k < 1, then
it was proved by Dewan et al [6] that for every real or complex number a with |a| > k and each

r>0
27 % 27:r %
n(|a|—k){/yp(e“"wde} < {/ 11+ke“’y’"d9} ]|\4|g:1E\DaP(z)\.
0

0
In this paper, we shall present a generalization of above result and also extend it to the class of
polynomials P(z2) = a, 2™+ ZZ:M ap—pz" Y, 1 < p < n, having all its zeros in |z| < k where k < 1
and thereby obtain certain generalizations of above and many other known results.
Key Words and Phrases: Polynomials; Polar derivatives; Integral mean estimates. Bernstein’s
inequality.
2000 Mathematics Subject Classifications: 30A10, 30C10, 30E10, 30C15

1. Introduction and statement of results

Let P(z) be a polynomial of degree n. It was shown by Turan [12] that if P(z) has all
its zeros in |z| < 1, then
n]l\/[‘aa: |P(2)| < 2%aa: |P'(z)]. (1)
z|=1 z|=1

Inequality (1) is best possible with equality holds for P(z) = az" 4 3 where |a| = |3|. The
above inequality (1) of Turdn [12] was generalized by Malik [10], who proved that if P(z)
is a polynomial of degree n having all its zeros in |z| < k, where k < 1, then

Maz |P'(2)| > —— Maz |P(2)] . 2)

|z|=1 14+ kjzj=1

where as for k > 1, Govil [7] showed that

" Maz|P(2)], (3)

Mazx |P' >
a;ll: | (Z)| — 1+ kn |z|=1

|2|=
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Both the above inequalities (2) and (3) are best possible, with equality in (2) holding
for P(z) = (z + k)™, where k > 1. While in (3) the equality holds for the polynomial
P(z) = az™ + Bk™ where |a| = |3].
As a refinement of (2), Aziz and Shah [4] proved if P(z) is a polynomial of degree n
having all its zeros in |z| < k, where k < 1, then
1
Maz |P'(2)] > —2— ! Maz |P — Min|P . 4
Var [P > i {Mas PO + ikl (1)
Let D,P(z) denotes the polar derivative of the polynomial P(z) of degree n with
respect to the point o, then

D,P(z) =nP(z) + (o — 2) P'(2).

The polynomial D, P(z) is a polynomial of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that

ikt

a—0o0 «

|-re.

Aziz and Rather [2] extends (2) to polar derivatives of a polynomial and proved that
if all the zeros of P(z) lie in |z| < k where k < 1 then for every real or complex number «
with |a| > k,

la| —k
> .
J‘\ggf [DaP(z)] 21 ( T F J‘\Z{ggf | P(2)] (5)

For the class of polynomials P(z) = a,z" + Zzzu an_p2"Y, 1 < pu < n, of degree n
having all its zeros in |z| < k where k < 1, Aziz and Rather [3] proved that if « is real or
complex number with |a| > k* then

|| — K+
Mazx |D,P > ——— | Mazx |P(2)|. 6
\z\gf| @)z n ( 1+ k# mgf‘ )l (©)

Malik [11] obtained a generalization of (1) in the sense that the left-hand side of (1)
is replaced by a factor involving the integral mean of |P(z)| on |z| = 1. In fact he proved
that if P(z) has all its zeros in |z| < 1, then for each ¢ > 0,

o 1/q o 1/q
n !’P(ei0>’qd€ < 0/]1+e”qde Mag|P'(z)]. (7)

If we let ¢ tend to infinity in (7), we get (1).

The corresponding generalization of (2) which is an extension of (7) was obtained by
Aziz [1] by proving that if P(z) is a polynomial of degree n having all its zeros in |z| <
where k > 1, then for each ¢ > 1

1/q o 1/q

n Z‘P(ew)‘qdﬂ < O/‘I—kk;”eieqdﬂ Mag|P'(2)] )
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The result is best possible and equality in (5) holds for the polynomial P(z) = az™ + k™
where |a] = |5].

As a generalization of inequality 5, Dewan et al [6] obtained an LP inequality for the
polar derivative of a polynomial and proved the following:

Theorem 1. If P(z) is a polynomial of degree m having all its zeros in |z| < k, where
k <1, then for every real or complex number « with |a| > k and for each r > 0,

n(ja] - / (e

In this paper, we consider the class of polynomials P(z) = a,z" + Z;‘L:u an,jz"_j ,
1 < p < n, having all its zeros in |z| < k where k < 1 and establish some improvements
and generalizations of inequalities (1),(2),(5),(8) and (9).

T 271' %
< / \1+kei9 @9 0 Mar|DaP(2)) 9)
0

In this direction, we first present the following interesting results which yields (9) as a
special case.

Theorem 2. If P(z) is a polynomial of degree m having all its zeros in |z| < k, where
k <1, then for every real or complex o, 8 with || > k, |8| <1 and for each r >0, p > 1,
g>1withp ' +q¢ ' =1, we have

T r 2 % 21 qir

n(|al — k) /‘P(ei")wkfﬁl oy < /|1+kei9\md9 /|Dap(ei9)|qrda
0 0 0 ( )
10

where m = Mzn|P( )]

|2|=
If we take 8 = 0, we get the following result.

Corollary 1. If P(z) is a polynomial of degree n having all its zeros in |z| < k, where
k <1, then for every real or complex o, with |a| > k and for eachr >0, p>1,q > 1

with p~ + ¢! =1, we have
1 1 1
¥ 27 pr 2 ar
n(|a] — /’P i0) < /1+kei"|f"“d9 /|D(}P(ei9)|‘”d6 . a1
0 0

Remark 1. Theorem 1 follows from (11) by letting ¢ — oo (so that p — 1) in Corollary
1. If we divide both sides of inequality (11) by |«| and make a@ — oo, we get (5).

Dividing the two sides of (10) by |a| and letting |a| — oo, we get the following result.
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Corollary 2. If P(z) is a polynomial of degree n having all its zeros in |z| < k, where
k <1, then for every real or complex § with || <1 and for eachr >0, p> 1, ¢ > 1 with
pt 4+ ¢t =1, we have

€
pr

T

2 2
n /’P(ew)—i-ﬁ "fl Tap Y < /1+keiemd9
0 0

qr

27
/ P(c)[ db (12)
0

kn
where m = Min|P(z)|.
|z|=k
If we let ¢ — oo in (12), we get the following corollary.

Corollary 3. If P(z) is a polynomial of degree n having all its zeros in |z| < k, where
k <1, then for every real or complezx 8 with |3| <1 and for each r > 0, we have

r

27 21
n /’P(ew)—i-ﬁ o \Tde < /|1+k:ei9|rd9 Maz|P'(2)], (13)
0 0

kn—1 |z|=1
where m = {\/.lfz7£|P(z)|
Remark 2. If we let r — oo in (13) and choosing argument of 8 suitably with |3] = 1,
we obtain (4).

Next, we extend (9) to the class of polynomials P(2) = a,z" +3°0_ an—pz" ", 1 <
1 < n, having all its zeros in |z| <k, k < 1 and thereby obtain the following result.

Theorem 3. If P(z) = ap2" + Y 1 an—p2" ", 1 < p < mn, is a polynomial of degree n

V=[
having all its zeros in |z| < k where k < 1, then for every real or complex o with |a| > k*

and for each r >0, p>1, ¢ > 1 with p~' + ¢! = 1, we have

1 1 1
r pr 21 qr

21 21
n(|a| — kM) /|P(e“’)|’"de < /1+k:ﬂei6|p7"d9 /Dap(ew)wde . (14)
0 0 0

Remark 3. We let 7 — oo and p — oo (so that ¢ — 1) in (14), we get inequality (6).
If we divide both sides of (14) by |a| and make o — oo, we get the following result.

Corollary 4. If P(z) = apz" + ZZ:# -2V, 1 < pu < n, is a polynomial of degree n
having all its zeros in |z| < k where k < 1, then for for each v > 0, p > 1, ¢ > 1 with
p~ L+ ¢! =1, we have

T

qr

2m
/|P’(ei9)qrd9 : (15)
0

s

2 2
n / |P(e?)"do y < / |1+ kHePrde
0 0
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Letting ¢ — oo (so that p — 1) in (14), we get the following result:

Corollary 5. If P(z) = an2" + ZZ:# n—p2" 7,1 < p < n, where 1l < p <mn,isa
polynomial of degree n having all its zeros in |z| < k, where k < 1, then for every real or
complex number o with |a| > k" and for each r > 0,

1 1
21 i 27 T
n(jal — k") /’P(eie>’Td€ < /l—i-k“ew " do Maz|DaP(z)|.  (16)
0 0

As a generalization of Theorem 3, we present the following result:

Theorem 4. If P(z) = apz" + ZZ:N p—p2™ " where 1 < p < n, is a polynomial of
degree n having all its zeros in |z| < k where k < 1, then for every real or complex o with
|| > k* and for each r >0, p > 1, ¢> 1 with p~t + ¢! =1, we have

T

L
pr qr

27 27 2w
n(|a| — k*) / |P(e) + gm|"de p < / 11+ kHe®|Prde / | Do P(e)|7do
0 0 0

(17)

where m = Min|P(z)|.
|z|=k

If we divide both sides by |a| and make o — oo, we get the following result:

Corollary 6. If P(z) = ap2™ + ZZ:H an—p2" 7", 1 < u < mn,is a polynomial of degree n
having all its zeros in |z| < k where k < 1, then for for each v > 0, p > 1, ¢ > 1 with
p~l+q¢ ' =1, we have

L
pr

T

qr

27 21 27
n / () + pmlrdo b < / 11+ kel g / P/ () dg (18)
0 0 0

where m = Min|P(z)|.
|z|=k

Letting ¢ — oo (so that p — 1) in (14), we get the following result:
Corollary 7. If P(z) = an2" + ZZ:H Gp—pz™ 7 where 1 < p < n, is a polynomial of
degree n. having all its zeros in |z| < k, where k < 1, then for every real or complex number
o with |« > k* and for each r > 0,

"0 MazDaP(2)|  (19)
zl=1

1
2T T 2T
n(|al — k*) /‘P(ew) +ﬁm‘rd6 < /\1+kﬂei9
0 0

where m = Min|P(z)|.
|2|=Fk
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2. Lemmas
For the proofs of the theorems, we need the following Lemmas:

Lemma 1. If P(z) is a polynomial of degree almost n having all its zeros in in |z| < k
k <1 then for |z| =1,

nm
o <P (20)

Q') +

where Q(z) = z2"P(1/Z) and m = {\417}61|P(z)|

The above Lemma is due to Govil and McTume [8].

Lemma 2. Let P(z) = a,z" + ZZ:M p—p2™ ", 1 < p < mn, is a polynomial of degree n,
which does not vanish for |z| < k, where k > 1 then for |z| =1,

KPP (2)] < 1Q' (=)l (21)

where Q(z) = 2"P(1/Z).

The above Lemma is due to Chan and Malik [5]. By applying Lemma 2 to the poly-
nomial 2" P(1/Z), one can easily deduce:

Lemma 3. Let P(z) = a,z" + Z:}:u n—p2" 7", 1 < p < n, is a polynomial of degree n,
having all its zeros in |z| < k, where k <1 then for |z| =1

K P'(2)] > 1Q'(2)], (22)

where Q(z) = z2"P(1/Z).

3. Proof of Theorems

Proof. [Proof of Theorem 2] Let Q(z) = 2"P(1/Z) then P(z) = z"Q(1/Z) and it
can be easily verified that for |z| =1,

Q'(2)] = InP(2) — 2P'(2)] and |P'(2)] = [nQ(2) — 2Q'(2)]. (23)
By Lemma (1), we have for every § with |3] <1 and |z| =1,
n—1
Q)+ | < Q) + e <HP ) (24)
Using (23) in (24), for |z| =1 we have
_ n—1
Q)+ B | < HnQ() - Qo) (25)
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By Lemma 3 with p =1, for every real or complex number « with |o| > k and
|z| =1, we have

[DaP(2)| 2 [o]|P'(2)] - [Q'(2)]
> (laf = B)|P'(2)]- (26)

Since P(z) has all its zeros in |z| < k < 1, it follows by Gauss-Lucas Theorem
that all the zeros of P’(z) also lie in |z| < k < 1. This implies that the polynomial

2"HP(1/2) = nQ(2) — 2Q'(2)
does not vanish in |z| < 1. Therefore, it follows from (25) that the function
, _nmz"!
2 Q'(z) + 5W
k(nQ(z) — 2Q'(2))

is analytic for |z| <1 and |w(z)| <1 for |z| = 1. Furthermore, w(0) = 0. Thus the
function 1+ kw(z) is subordinate to the function 1+ kz for |z| < 1. Hence by a
well known property of subordination [9], we have

w(z) =

2T 27
/‘1+kw(ei6)‘rd9</‘1+kei6rd6, r> 0. (27)
0 0
Now .
n (Q(Z) + B%)
B T T e
and

|P'(2)] = [z" T P(A/7)] = [nQ(2) — 2Q'(2)], for || =1,

therefore for |z| =1,

0@ + B = L+ R Q) — Q') = L+ b IP )
equivalently,
n|z"P(1/7) +5,sz = |1+ kw(z)|[P'(2)).
This implies
n‘P(z) 4| = 1+ kw(2)||P'(2)] for |2] = 1. (28)
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From (25) and (28), we deduce that for ¢ > 0,

2

2
n" (o —k)r/‘P(e“’)mk:fl] do < /|1+kw(ei9)rpap(ei9)rd9.
0

0

This gives with the help of Holder’s inequality and using (27), for p > 1, ¢ > 1
with p~1 +¢71 =1,

27 27 1/p 21 1/q
. m |7 . )

n"(la] — k)" / |P() + s | < / 1+ ke 7" do / IDoP(c)7an |

0 0 0
equivalently,

1 1 1

21 T 21 pr 27 qr

n(lal —kH) /‘P(ew)—i—ﬁ = ]Tde < /1+kei9|1"“da /|D P(e?))Td
fn—1 — @
0 0 0

which proves the desired result.

Proof. [Proof of Theorem 3] Since P(z) has all its zeros in |z| < k, therefore,
by using Lemma 3 we have for |z| =1,

Q' ()] < K nQ(z) — 2Q'(2)]- (29)
Now for every real or complex number o with |a| > k¥, we have

[DaP(2)] = [nP(2) + (a — 2)P'(2)]
> |a||P'(2)] = [nP(z) — 2P'(2)],

by using (23) and Lemma 3, for |z| =1, we get

[DaP(2)| 2 [of|P'(2)] - Q'(2)]
> (laf = )P (2)]. (30)

Since P(z) has all its zeros in |z| < k < 1, it follows by Gauss-Lucas Theorem
that all the zeros of P’(z) also lie in |z| < k < 1. This implies that the polynomial

2EP(1/2) = nQ(2) — 2Q'(2)
does not vanish in |z| < 1. Therefore, it follows from (29) that the function

o) = 220
B Q) — Q)




38 N. A. Rather, Suhail Gulzar

is analytic for |z| <1 and |w(z)| <1 for |z| = 1. Furthermore, w(0) = 0. Thus the
function 1 + k*w(z) is subordinate to the function 1+ k*z for |z| < 1. Hence by
a well known property of subordination [9], we have

2T 27
/‘1 + k:“w(ew)‘rde < / ‘1 + k| do, r> 0. (31)
0 0
Now Q)
n z
1+ krw(z) = —————,
®) = a0 -0
and

|P'(2)] = [z" T P(A/7)] = [nQ(2) — 2Q'(2)], for |2 =1,
therefore, for |z| =1,
n|Q(2)] = [1+ k'w(2)[InQ(2) — 2Q'(2)] = [1 + k'w(2)[|P'(2)]- (32)
From (30) and (32), we deduce that for r > 0,

2 2m
(| —k”)r/|P(e“9)|rd9 < /|1+k:”w(ei9)7"|DQP(e“9)|Td6.
0 0

This gives with the help of Holder’s inequality and (31), for p > 1, ¢ > 1 with
-1 -1
p g =1,

2 o p /on 1/q
n"(Jaf — K4 / P(e)7df < / 11+ Kei|7"dp / Do P Tdg |
0 0 0
equivalently,
o o o > ¢ oon -
n(la] — &) /|P(e“9)7"d9 < /|1+k“e“’prd6 /|DaP(ew)‘”d9
0 0 0

which proves the desired result.

Proof. [Proof of Theorem 4] Let m = Min|,—_;|P(z)|, so that m < |P(z)| for
|z| = k. If P(z) has a zero on |z| = k then m = 0 and result follows from Theorem
3. Henceforth we suppose that all the zeros of P(z) lie in |z| < k. Therefore
for every g with |8 < 1, we have |mf3| < |P(z)| for |z| = k. Since P(z) has all
its zeros in |z| < k < 1, it follows by Rouche’s theorem that all the zeros of
F(z) = P(2) + Bm lie in |2| < k < 1. If G(2) = 2"F(1/Z) = Q(z) + fmz", then by
applying Lemma 3 to polynomial F(z) = P(z) + fm, we have for |z| =1,

|G’ (2)] < KH[F'(2)].
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This gives
1Q'(2) + nmpBz""1 < E*|P'(2)). (33)
Using (23) in (33), for |z| = 1 we have
1Q'(2) + nmB2"" < kFnQ(z) — 2Q'(2)] (34)

Since P(z) has all its zeros in |z| < k < 1, it follows by Gauss-Lucas Theorem
that all the zeros of P'(z) also lie in |z| < k < 1. This implies that the polynomial

2"PI(1)Z) = nQ(2) — 2Q(2)
does not vanish in |z| < 1. Therefore, it follows from (34) that the function

_ 2(Q'(z) +nmBz")
ke (nQ(2) — 2Q'(2))
is analytic for |z| <1 and |w(z)| <1 for |z| = 1. Furthermore, w(0) = 0. Thus the

function 1 + k#w(z) is subordinate to the function 1+ k*z for |z| < 1. Hence by
a well known property of subordination [9], we have

w(z)

27 27
/‘1+k“w(ew)‘rd9 g/‘l—i—k:“e“’ "9, r>0. (35)
0 0
mow Q) + mB")
. ~ n(Q(z) + mpB2"
LK) =200
and

|P'(2)] = [T P(A/Z)] = [nQ(2) — 2Q'(2)], for |2] =1,
therefore, for |z| =1,
n|Q(2) +mB2"| = 1+ k'w(2)|[nQ(2) — 2Q' ()| = [1 + K'w(2)[|P' (2)].

This implies

n|G(2)| = 1+ kw(2)[[nQ(2) — 2Q'(2)] = |1+ K'w(2)||P' (). (36)
Since |F(z)| = |G(z)| for |z| = 1, therefore, from (36) we get

n|P(z) + fm| = |1 + k*w(2)||P'(z)| for |z| =1. (37)

From (30) and (37), we deduce that for r > 0,

2T 2m
" (lo — k“)’"/|P(ei‘9) + Bm|rdg < / 11+ kPw(e®)|"| Do P(e)]" d6.
0 0
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This gives with the help of Hoélder’s inequality in conjunction with (35) for
p>1,¢>1withp l4q =1,

21
n" (o] — k“)’"/|P(ew) + Bm|"do < /|1 + kMe|Prdg
0

1/p 1/q

2T 2T
/ |Do P(e)|7do :
0

0

equivalently,

2
n(|a| — k") /|P(ei9) + Bm)|"do
0

1 1

27 E 21 qr
< / |14 k*e|Prdo / | Do P(e)|7"d0
0 0

which proves the desired result.

1]

2]
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