

An Operator Preserving L_p Inequality Between Polynomials

N.A.Rather*, Mushtaq.A.Shah

Abstract. If $P(z)$ is a polynomial of degree at most n which does not vanish in $|z| < 1$, then it was recently formulated by Shah and Liman [Integral estimates for the family of B-operators, Operators and Matrices, 5(2011), 79 - 87] that for every $R \geq 1$, $p \geq 1$,

$$\|B[P \circ \rho](z)\|_p \leq \frac{R^n |\Lambda| + |\lambda_0|}{\|1+z\|_p} \|P(z)\|_p,$$

where B is a B_n -operator with parameters $\lambda_0, \lambda_1, \lambda_2$ in the sense of Rahman and Schmeisser [16], $\rho(z) = Rz$ and $\Lambda = \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}$. Unfortunately the proof of this result is not correct. In this paper, we present a refined L_p -inequality for B_n -operators which not only provide a correct proof of the above inequality as a special case but also extend the inequality for $0 \leq p < 1$ as well.

Key Words and Phrases: L^p -inequalities, B_n -operators, polynomials.

2000 Mathematics Subject Classifications: 26D10, 41A17

1. Introduction and Statements of Results

Let \mathcal{P}_n denote the space of all complex polynomials $P(z) = \sum_{j=0}^n a_j z^j$ of degree at most n and let $\mathcal{P}_n(A)$ be the set of polynomials in \mathcal{P}_n having all zeros in $A \subset \mathbb{C}$. We write $U = \{z \in \mathbb{C} : |z| = 1\}$, $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, $\bar{\Delta}$ its closure, $\Delta^c = \mathbb{C} \setminus \Delta$ and $\Omega = \mathbb{C} \setminus \bar{\Delta}$. For $P \in \mathcal{P}_n$, define

$$\|P(z)\|_0 = \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| d\theta \right\},$$

$$\|P(z)\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{1/p}, \quad 0 < p < \infty,$$

$$\|P(z)\|_\infty = \max_{z \in U} |P(z)|$$

*Corresponding author.

and denote for any complex function $\rho : \mathbb{C} \rightarrow \mathbb{C}$ the composite function of P and ρ , defined by $(P \circ \rho)(z) = P(\rho(z))$ ($z \in \mathbb{C}$), as $P \circ \rho$.

If $P \in \mathcal{P}_n$, then

$$\|P'(z)\|_p \leq n \|P(z)\|_p, \quad p \geq 1 \quad (1)$$

and

$$\|P(Rz)\|_p \leq R^n \|P(z)\|_p, \quad R > 1, \quad p > 0. \quad (2)$$

Inequality (1) was found out by Zygmund [20] whereas inequality (2) is a simple consequence of a result of Hardy [9]. Arrestov [2] proved that (1) remains true for $0 \leq p < 1$ as well. For $p = \infty$, the inequality (1) is due to Bernstein (for reference, see [11], [15], [17]) whereas the case $p = \infty$ of inequality (2) is a simple consequence of the maximum modulus principle (see [12], [13], [16]). Both the inequalities (1) and (2) can be sharpened if we restrict ourselves to the class of

polynomials $\mathcal{P}_n^\circ = \mathcal{P}_n(\Delta^c)$. In fact, if $P \in \mathcal{P}_n^\circ$, then inequalities (1) and (2) can be respectively replaced by

$$\|P'(z)\|_p \leq n \frac{\|P(z)\|_p}{\|1+z\|_p}, \quad 0 \leq p \leq \infty \quad (3)$$

and

$$\|P(Rz)\|_p \leq \frac{\|R^n z + 1\|_p}{\|1+z\|_p} \|P(z)\|_p, \quad R > 1, \quad p > 0. \quad (4)$$

Inequality (3) is due to De-Bruijn [7] (see also [3]) for $p \geq 1$. Rahman and Schmeisser [15] extended it for $0 \leq p < 1$ whereas the inequality (4) was proved by Boas and Rahman [6] for $p \geq 1$ and later it was extended for $0 \leq p < 1$ by Rahman and Schmeisser [15]. For $p = \infty$, the inequality (3) was conjectured by Erdős and later verified by Lax [10] whereas inequality (4) was proved by Ankeny and Rivlin [1].

Rahman [14] (see also Rahman and Schmeisser [16, p. 538]) introduced a class B_n of operators B that maps $P \in \mathcal{P}_n$ into itself. That is, the operator B carries $P \in \mathcal{P}_n$ into

$$B[P](z) = \lambda_0 P(z) + \lambda_1 \left(\frac{nz}{2}\right) \frac{P'(z)}{1!} + \lambda_2 \left(\frac{nz}{2}\right)^2 \frac{P''(z)}{2!}, \quad (5)$$

where λ_0, λ_1 and λ_2 are real or complex numbers such that all the zeros of

$$u(z) = \lambda_0 + n\lambda_1 z + \frac{n(n-1)}{2} \lambda_2 z^2, \quad (6)$$

lie in the half plane

$$|z| \leq |z - n/2| \quad (7)$$

and proved that if $P \in \mathcal{P}_n$, then

$$|B[P \circ \rho](z)| \leq R^n |\Lambda| \|P(z)\|_\infty \quad \text{for } z \in U \quad (8)$$

and if $P \in \mathcal{P}_n^\circ$, then as a special case of Corollary 14.5.6 in [16, p. 539], we have

$$|B[P \circ \rho](z)| \leq \frac{1}{2} \{R^n|\Lambda| + |\lambda_0|\} \|P(z)\|_\infty \quad \text{for } z \in U, \quad (9)$$

where $\rho(z) = Rz$, $R \geq 1$ and

$$\Lambda = \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}. \quad (10)$$

Inequality (9) also follows by combining the inequalities (5.2) and (5.3) due to Rahman [14].

As an extension of inequality (9) to L_p -norm, recently Shah and Liman [19, Theorem 1] proved:

Theorem A. *If $P \in \mathcal{P}_n$, then for every $R \geq 1$ and $p \geq 1$,*

$$\|B[P \circ \rho](z)\|_p \leq R^n|\Lambda| \|P(z)\|_p,$$

where $B \in B_n$, $\rho(z) = Rz$ and Λ is defined by (10).

While seeking the desired extension of inequality (9) to L_p -norm, they [19, Theorem 2] have made an incomplete attempt by claiming to have proved:

Theorem B. *If $P \in \mathcal{P}_n^\circ$, then for each $p \geq 1$, $R \geq 1$,*

$$\|B[P \circ \rho](z)\|_p \leq \frac{R^n|\Lambda| + |\lambda_0|}{\|1+z\|_p} \|P(z)\|_p, \quad (11)$$

where $B \in B_n$, $\rho(z) = Rz$ and Λ is defined by (10).

Further, it has been claimed in [19] to have proved the inequality (11) for self-inversive polynomials as well.

Unfortunately the proof of inequality (11) and other related results including the key lemma [19, Lemma 4] given by Shah and Liman is not correct. The reason being that the authors in [19] deduce:

line 10 from line 7 on page 84, line 19 on page 85 from Lemma 3 [19] and line 16 from line 14 on page 86, by using the fact that if $P^*(z) = z^n \overline{P(1/\bar{z})}$, then for $\rho(z) = Rz$, $R \geq 1$ and $z \in U$,

$$|B[P^* \circ \rho](z)| = |B[(P^* \circ \rho)^*](z)|,$$

which is not true, in general, for every $R \geq 1$ and $z \in U$. To see this, let

$$P(z) = a_n z^n + \cdots + a_k z^k + \cdots + a_1 z + a_0$$

be an arbitrary polynomial of degree n , then

$$P^*(z) = z^n \overline{P(1/\bar{z})} = \bar{a}_0 z^n + \bar{a}_1 z^{n-1} + \cdots + \bar{a}_k z^{n-k} + \cdots + \bar{a}_n.$$

Now with $\Lambda_1 = \lambda_1 n/2$ and $\Lambda_2 = \lambda_2 n^2/8$, we have

$$B[P^* \circ \rho](z) = \sum_{k=0}^n (\lambda_0 + \Lambda_1(n-k) + \Lambda_2(n-k)(n-k-1)) \bar{a}_k z^{n-k} R^{n-k},$$

and in particular for $z \in U$, we get

$$B[P^* \circ \rho](z) = R^n z^n \sum_{k=0}^n (\lambda_0 + \Lambda_1(n-k) + \Lambda_2(n-k)(n-k-1)) \overline{a_k \left(\frac{z}{R}\right)^k},$$

whence

$$|B[P^* \circ \rho](z)| = R^n \left| \sum_{k=0}^n \overline{(\lambda_0 + \Lambda_1(n-k) + \Lambda_2(n-k)(n-k-1)) a_k \left(\frac{z}{R}\right)^k} \right|.$$

But

$$|B[(P^* \circ \rho)^*](z)| = R^n \left| \sum_{k=0}^n (\lambda_0 + \Lambda_1 k + \Lambda_2 k(k-1)) a_k \left(\frac{z}{R}\right)^k \right|,$$

so the asserted identity does not hold in general for every $R \geq 1$ and $z \in U$ as e.g. the immediate counterexample of $P(z) = z^n$ demonstrates in view of $P^*(z) = 1$, $|B[P^* \circ \rho](z)| = |\lambda_0|$ and

$$|B[(P^* \circ \rho)^*](z)| = |\lambda_0 + \lambda_1(n^2/2) + \lambda_2 n^3(n-1)/8| \quad (z \in U).$$

The main aim of this paper is to establish a sharp L_p extension of inequality (9) for $0 \leq p < \infty$ which includes the correct proof of inequality (11) as a special case. In this direction, we present the following compact generalization inequalities (1), (2) and (9), which is also a refinement of inequality (11) and extends it for $0 \leq p < 1$ as well.

Theorem 1. *If $P \in \mathcal{P}_n^o$ and $m = \min_{|z|=1} |P(z)|$, then for every real or a complex number δ , with $|\delta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,*

$$\left\| B[P \circ \rho](z) + \delta \frac{(R^n |\Lambda| - |\lambda_0|)m}{2} \right\|_p \leq \frac{\|R^n \Lambda z + \lambda_0\|_p}{\|1+z\|_p} \|P(z)\|_p, \quad (12)$$

where $B \in B_n$, $\rho(z) = Rz$ and Λ is defined by (10). The result is sharp, as is shown by the extremal polynomial $P(z) = az^n + b$, $|a| = |b| \neq 0$.

Remark 1. If we choose $\lambda_0 = 0 = \lambda_2$ in (12), we get for every real or a complex number δ , with $|\delta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,

$$\left\| P'(Rz) + \delta \frac{nR^{n-1}m}{2} \right\|_p \leq \frac{nR^{n-1}}{\|1+z\|_p} \|P(z)\|_p,$$

which, in particular, yields inequality (3). Next if we take $\lambda_1 = 0 = \lambda_2$ and $\delta = 0$ in (12), we get inequality (4).

By the triangle inequality, the following result immediately follows from Theorem 1.

Corollary 1. *If $P \in \mathcal{P}_n^\circ$, and $m = \min_{|z|=1} |P(z)|$, then for every real or a complex number δ , with $|\delta| \leq 1$, $R > 1$ and $0 \leq p < \infty$,*

$$\left\| B[P \circ \rho](z) + \delta \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\|_p \leq \frac{R^n|\Lambda| + |\lambda_0|}{\|1+z\|_p} \|P(z)\|_p, \quad (13)$$

where $B \in B_n$, $\rho(z) = Rz$ and Λ is defined by (10).

Letting $p \rightarrow \infty$ in (12) and choosing the argument of δ suitably, we get the following refinement of inequality (9).

Corollary 2. *If $P \in \mathcal{P}_n^\circ$, and $m = \min_{|z|=1} |P(z)|$, then for every real or a complex number δ , with $|\delta| \leq 1$, $R > 1$,*

$$|B[P \circ \rho](z)| \leq \frac{1}{2} \{ (R^n|\Lambda| + |\lambda_0|) \|P(z)\|_\infty - \delta (R^n|\Lambda| - |\lambda_0|) m \} \quad \text{for } z \in U, \quad (14)$$

For $\delta = 0$, inequality (14) reduces to inequality (9)

For $\delta = 0$, Theorem 1 reduces to the following result:

Corollary 3. *If $P \in \mathcal{P}_n^\circ$, then for every $R > 1$ and $0 \leq p < \infty$,*

$$\|B[P \circ \rho](z)\|_p \leq \frac{\|R^n\Lambda z + \lambda_0\|_p}{\|1+z\|_p} \|P(z)\|_p, \quad (15)$$

Remark 2. Corollary 2 not only validates Theorem B for $p \geq 1$ but also extends it for $0 \leq p < 1$ as well.

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma follows from Corollary 18.3 of [11, p. 65].

Lemma 1. *If $B \in B_n$ and $P \in \mathcal{P}_n(\bar{\Delta})$, then $B[P] \in \mathcal{P}_n(\bar{\Delta})$.*

Lemma 2. *If $P \in \mathcal{P}_n(\Delta^c)$, then*

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho](z)| \quad \text{for } z \in U, \quad (16)$$

where $B \in B_n$ and $\rho(z) = Rz$ with $R > 1$ arbitrary.

Lemma 2 is due to Rahman [14].

Lemma 3. *If $P \in \mathcal{P}_n(\bar{\Delta})$, then*

$$|B[P \circ \rho](z)| \geq R^n |\Lambda| m \quad \text{for } z \in U, \quad (17)$$

where $B \in B_n$, $m = \min_{|z|=1} |P(z)|$ and $\rho(z) = Rz$ with $R > 1$ arbitrary.

Proof of Lemma 3. By hypothesis all the zeros of $P(z)$ lie in $\bar{\Delta}$ and

$$m|z|^n \leq |P(z)| \quad \text{for } z \in U.$$

we first show that the polynomial $G(z) = P(z) - \alpha m z^n$ has all its zeros in $\bar{\Delta}$ for every real or complex number α with $\alpha \in \Delta$. This is obvious if $m = 0$, that if $P(z)$ has a zero on U . Henceforth, we assume $P(z)$ has all its zeros in Δ , then $m > 0$ and it follows by Rouche's theorem that the polynomial $G(z) = P(z) - \alpha m z^n$ has all its zeros in Δ for every complex number $\alpha \in \Delta$ and hence all the zeros of $G(Rz) = P(Rz) - \alpha m R^n z^n$ lie in Δ . Applying Lemma 1 to $G(Rz)$, we conclude that $B[G \circ \rho](z) = B[P \circ \rho](z) - \alpha m R^n \Lambda z^n$ has all its zeros in Δ . This implies

$$|B[P \circ \rho](z)| \geq R^n |\Lambda| |z|^n m \quad \text{for } z \in \Delta^c, \quad (18)$$

which proves Lemma 3.

Lemma 4. *If $P \in \mathcal{P}_n(\Delta^c)$, and $m = \min_{|z|=1} |P(z)|$ then*

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho](z)| - (R^n \Lambda - |\lambda_0|)m \quad \text{for } z \in U, \quad (19)$$

where $B \in B_n$ and $\rho(z) = Rz$ with $R > 1$ arbitrary.

Proof of Lemma 4. By hypothesis all the zeros of $P(z)$ lie in Δ^c and

$$m \leq |P(z)| \quad \text{for } z \in U. \quad (20)$$

We show $F(z) = P(z) + \lambda m$ does not vanish in Δ for $\lambda \in \bar{\Delta}$. This is obvious if $m = 0$, that if $P(z)$ has a zero on U . So, we assume $P(z)$ has all its zeros in Ω , then $m > 0$ then by maximum modulus principle, it follows from (20),

$$m < |P(z)| \quad \text{for } z \in \Delta. \quad (21)$$

Now if $F(z) = P(z) + \lambda m = 0$ for some $z = z_0$ with $z_0 \in \Delta$, then

$$P(z_0) + \lambda m = 0.$$

This implies

$$P(z_0) = |\lambda| m \leq m \quad \text{for } z_0 \in \Delta,$$

which is clearly a contradiction to (21). Thus the polynomial $F(z)$ does not vanish for $z \in \Delta$ for every $\lambda \in \Delta$. Applying Lemma 2 to $F(z)$, we get

$$|B[F \circ \rho](z)| \leq |B[F^* \circ \rho](z)| \quad \text{for } z \in U,$$

Replacing $F(z)$ by $P(z) + \lambda m$, we get

$$|B[P \circ \rho](z) + \lambda m \lambda_0| \leq |B[P^* \circ \rho](z) + \bar{\lambda} m R^n \Lambda z^n| \quad \text{for } z \in U. \quad (22)$$

Choosing argument of λ , with $|\lambda| = 1$ in the right hand side of (22) such that

$$|B[P^* \circ \rho](z) + \bar{\lambda} m R^n \Lambda z^n| = |B[P^* \circ \rho](z)| - m R^n |\Lambda| |z|^n \quad \text{for } z \in U, \quad (23)$$

which is possible by Lemma 3, we get

$$|B[P \circ \rho](z)| - m |\lambda_0| \leq |B[P^* \circ \rho](z)| - m R^n |\Lambda| |z|^n \quad \text{for } z \in U,$$

Equivalently, for $z \in U$, we have

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho](z)| - (R^n |\Lambda| - |\lambda_0|) m.$$

This completes the proof of Lemma 4.

Next we describe a result of Arrestov [2].

For $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n) \in \mathbb{C}^{n+1}$ and $P(z) = \sum_{j=0}^n a_j z^j \in \mathcal{P}_n$, we define

$$C_\gamma P(z) = \sum_{j=0}^n \gamma_j a_j z^j.$$

The operator C_γ is said to be admissible if it preserves one of the following properties:

- (i) $P \in \mathcal{P}_n(\bar{\Delta})$,
- (ii) $P \in \mathcal{P}_n(\Delta^c)$. The result of Arrestov may now be stated as follows.

Lemma 5. [2, Th.2] *Let $\phi(x) = \psi(\log x)$ where ψ is a convex nondecreasing function on \mathbb{R} . Then for all $P \in \mathcal{P}_n$ and each admissible operator C_γ ,*

$$\int_0^{2\pi} \phi \left(|C_\gamma P(e^{i\theta})| \right) d\theta \leq \int_0^{2\pi} \phi \left(c(\gamma) |P(e^{i\theta})| \right) d\theta$$

where $c(\gamma) = \max(|\gamma_0|, |\gamma_n|)$.

In particular Lemma 5 applies with $\phi : x \rightarrow x^p$ for every $p \in (0, \infty)$ and with $\phi : x \rightarrow \log x$ as well. Therefore, we have for $0 \leq p < \infty$,

$$\left\{ \int_0^{2\pi} \left| C_\gamma P(e^{i\theta}) \right|^p d\theta \right\}^{1/p} \leq c(\gamma) \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta \right\}^{1/p}. \quad (24)$$

From Lemma 5, we deduce the following result.

Lemma 6. *If $P \in \mathcal{P}_n(\Delta^c)$, then for every $p > 0$, $R > 1$ and α real, $0 \leq \alpha < 2\pi$,*

$$\int_0^{2\pi} \left| B[P \circ \rho](e^{i\theta}) e^{i\alpha} + B[P^* \circ \rho](e^{i\theta}) \right|^p d\theta \leq |R^n \Lambda e^{i\alpha} + \bar{\lambda}_0|^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta, \quad (25)$$

where $B \in B_n$, $\rho(z) = Rz$, $B[P^* \circ \rho]^*(z) = (B[P^* \circ \rho](z))^*$ and Λ is defined by (10).

Proof of Lemma 6. Since $P \in \mathcal{P}_n(\Delta^c)$ and $P^*(z) = z^n \overline{P(1/\bar{z})}$, by Lemma 2, we have

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho](z)| \quad \text{for } z \in U. \quad (26)$$

Also, since $P^*(Rz) = R^n z^n \overline{P(1/R\bar{z})}$,

$$\begin{aligned} B[P^* \circ \rho](z) &= \lambda_0 R^n z^n \overline{P(1/R\bar{z})} \\ &+ \lambda_1 \left(\frac{nz}{2} \right) \left(nR^n z^{n-1} \overline{P(1/R\bar{z})} - R^{n-1} z^{n-2} \overline{P'(1/R\bar{z})} \right) \\ &+ \frac{\lambda_2}{2!} \left(\frac{nz}{2} \right)^2 \left(n(n-1) R^n z^{n-2} \overline{P(1/R\bar{z})} \right. \\ &\quad \left. - 2(n-1) R^{n-1} z^{n-3} \overline{P'(1/R\bar{z})} + R^{n-2} z^{n-4} \overline{P''(1/R\bar{z})} \right) \end{aligned}$$

and therefore,

$$\begin{aligned} B[P^* \circ \rho]^*(z) &= (B[P^* \circ \rho](z))^* \\ &= \left(\bar{\lambda}_0 + \bar{\lambda}_1 \frac{n^2}{2} + \bar{\lambda}_2 \frac{n^3(n-1)}{8} \right) R^n P(z/R) \\ &\quad - \left(\bar{\lambda}_1 \frac{n}{2} + \bar{\lambda}_2 \frac{n^2(n-1)}{4} \right) R^{n-1} z P'(z/R) + \bar{\lambda}_2 \frac{n^2}{8} R^{n-2} z^2 P''(z/R). \end{aligned}$$

Also,

$$|B[P^* \circ \rho](z)| = |B[P^* \circ \rho]^*(z)| \quad \text{for } z \in U.$$

Using this in (26), we get

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho]^*(z)| \quad \text{for } z \in U, \quad R > 1.$$

Since $(P^* \circ \rho) \in \mathcal{P}_n(\Delta)$, by Lemma 1, $B[P^* \circ \rho] \in \mathcal{P}_n(\Delta)$, therefore, $B[P^* \circ \rho]^* \in \mathcal{P}_n(\Omega)$. Hence by the maximum modulus principle,

$$|B[P \circ \rho](z)| < |B[P^* \circ \rho]^*(z)| \quad \text{for } z \in \Delta. \quad (27)$$

A direct application of Rouche's theorem shows that with $P(z) = a_n z^n + \dots + a_0$,

$$\begin{aligned} C_\gamma P(z) &= B[P \circ \rho](z) e^{i\alpha} + B[P^* \circ \rho]^*(z), \\ &= \left\{ R^n \left(\lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8} \right) e^{i\alpha} + \bar{\lambda}_0 \right\} a_n z^n \\ &\quad + \dots + \left\{ R^n \left(\bar{\lambda}_0 + \bar{\lambda}_1 \frac{n^2}{2} + \bar{\lambda}_2 \frac{n^3(n-1)}{8} \right) + e^{i\alpha} \lambda_0 \right\} a_0, \end{aligned}$$

has all its zeros in Δ^c , that is, $C_\gamma P \in \mathcal{P}_n(\Delta^c)$. Therefore, C_γ is an admissible operator. Applying (24) of Lemma 5, the desired result follows immediately for each $p > 0$.

We also need the following lemma due to A.Aziz and N.A.Rather [5].

Lemma 7. *If A, B, C are non negative real numbers such that $B + C \leq A$ then for every real α ,*

$$|(A - C)e^{i\alpha} + (B + C)| \leq |Ac^{i\alpha} + B|. \quad (28)$$

3. Proofs of the Theorems

Proof of Theorem 1. By hypothesis $P \in \mathcal{P}_n^o$, $\rho(z) = Rz$ and $R > 1$, therefore, by Lemma 4, we have

$$|B[P \circ \rho](z)| \leq |B[P^* \circ \rho](z)| - (R^n|\Lambda| - |\lambda_0|)m \quad \text{for } z \in U, \quad (29)$$

Since $B[P^* \circ \rho]^*(z)$ is the conjugate of $B[P^* \circ \rho](z)$ and

$$|B[P^* \circ \rho]^*(z)| = |B[P^* \circ \rho](z)|, \quad z \in U.$$

Therefore (29) can be written as

$$|B[P \circ \rho](z)| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \leq |B[P^* \circ \rho]^*(z)| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \quad \text{for } z \in U, \quad (30)$$

Taking

$$A = |B[P^* \circ \rho]^*(z)|, \quad B = |B[P \circ \rho](z)|$$

and

$$C = \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}$$

in Lemma 7 and noting by (30) that

$$B + C \leq A - C \leq A,$$

we get for every real α ,

$$\begin{aligned} & \left| \left\{ |B[P^* \circ \rho]^*(z)| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} e^{i\alpha} + \left\{ |B[P \circ \rho](z)| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} \right| \\ & \leq |B[P^* \circ \rho]^*(z)| e^{i\alpha} + |B[P \circ \rho](z)|. \end{aligned}$$

This implies for each $p > 0$,

$$\begin{aligned} & \int_0^{2\pi} \left| \left\{ |B[P^* \circ \rho]^*(e^{i\theta})| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} e^{i\alpha} + \left\{ |B[P \circ \rho](e^{i\theta})| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} \right| d\theta \\ & \leq \int_0^{2\pi} \left| |B[P^* \circ \rho]^*(e^{i\theta})| e^{i\alpha} + |B[P \circ \rho](e^{i\theta})| \right| d\theta. \end{aligned} \quad (31)$$

Integrating both sides of (31) with respect to α from 0 to 2π , we get with the help of Lemma 6 for each $p > 0$,

$$\begin{aligned}
& \int_0^{2\pi} \int_0^{2\pi} \left| \left\{ \left| B[P^* \circ \rho]^*(e^{i\theta}) \right| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} + e^{i\alpha} \left\{ \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} \right|^p d\theta d\alpha \\
& \leq \int_0^{2\pi} \int_0^{2\pi} \left| \left| B[P^* \circ \rho]^*(e^{i\theta}) \right| e^{i\alpha} + \left| B[P \circ \rho](e^{i\theta}) \right| \right|^p d\theta d\alpha \\
& \leq \int_0^{2\pi} \left\{ \int_0^{2\pi} \left| \left| B[P^* \circ \rho]^*(e^{i\theta}) \right| e^{i\alpha} + \left| B[P \circ \rho](e^{i\theta}) \right| \right|^p d\alpha \right\} d\theta \\
& \leq \int_0^{2\pi} \left\{ \int_0^{2\pi} \left| B[P^* \circ \rho]^*(e^{i\theta}) e^{i\alpha} + B[P \circ \rho](e^{i\theta}) \right|^p d\alpha \right\} d\theta \\
& \leq \int_0^{2\pi} \left\{ \int_0^{2\pi} \left| B[P^* \circ \rho]^*(e^{i\theta}) e^{i\alpha} + B[P \circ \rho](e^{i\theta}) \right|^p d\theta \right\} d\alpha \\
& \leq \int_0^{2\pi} \left| R^n \Lambda e^{i\alpha} + \bar{\lambda}_0 \right|^p d\alpha \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta. \tag{32}
\end{aligned}$$

Now it can be easily verified that for every real number α and $r \geq 1$,

$$|r + e^{i\alpha}| \geq |1 + e^{i\alpha}|.$$

This implies for each $p > 0$,

$$\int_0^{2\pi} |r + e^{i\alpha}|^p d\alpha \geq \int_0^{2\pi} |1 + e^{i\alpha}|^p d\alpha. \tag{33}$$

If $\left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \neq 0$, we take

$$r = \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) \right| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}}{\left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}},$$

then by (19), $r \geq 1$ and we get with the help of (33),

$$\int_0^{2\pi} \left| \left\{ \left| B[P^* \circ \rho]^*(e^{i\theta}) \right| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} + e^{i\alpha} \left\{ \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right\} \right|^p d\alpha$$

$$\begin{aligned}
&= \left| \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right|^p \int_0^{2\pi} \left| e^{i\alpha} + \frac{|B[P^\star \circ \rho]^\star(e^{i\theta})| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}}{|B[P \circ \rho](e^{i\theta})| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}} \right|^p d\alpha \\
&= \left| \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right|^p \int_0^{2\pi} \left| e^{i\alpha} + \frac{|B[P^\star \circ \rho]^\star(e^{i\theta})| - \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}}{|B[P \circ \rho](e^{i\theta})| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2}} \right|^p d\alpha \\
&\geq \left| \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right|^p \int_0^{2\pi} |1 + e^{i\alpha}|^p d\alpha
\end{aligned} \tag{34}$$

This inequality is trivially true for $|B[P \circ \rho](e^{i\theta})| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} = 0$. Using this in (32), we conclude that for each $p > 0$,

$$\begin{aligned}
&\int_0^{2\pi} \left| \left| B[P \circ \rho](e^{i\theta}) \right| + \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right|^p d\theta \int_0^{2\pi} |1 + e^{i\alpha}|^p d\alpha \\
&\leq \int_0^{2\pi} |R^n \Lambda e^{i\alpha} + \lambda_0|^p d\alpha \int_0^{2\pi} |P(e^{i\theta})|^p d\theta,
\end{aligned}$$

This gives for every real or complex number δ with $|\delta| \leq 1$ and α real

$$\begin{aligned}
&\int_0^{2\pi} \left| \left| B[P \circ \rho](e^{i\theta}) + \delta \frac{(R^n|\Lambda| - |\lambda_0|)m}{2} \right| \right|^p d\theta \int_0^{2\pi} |1 + e^{i\alpha}|^p d\alpha \\
&\leq \int_0^{2\pi} |R^n \Lambda e^{i\alpha} + \lambda_0|^p d\alpha \int_0^{2\pi} |P(e^{i\theta})|^p d\theta,
\end{aligned}$$

from which Theorem 1 follows for $p > 0$. To establish this result for $p = 0$, we simply let $p \rightarrow 0+$.

References

- [1] **N.C. Ankeny and T.J. Rivlin**, *On a theorem of S.Bernstein*, Pacific J. Math., **5**(1955), 849 - 852.
- [2] **V.V. Arestov**, *On integral inequalities for trigonometric polynomials and their derivatives*, Izv. Akad. Nauk SSSR Ser. Mat. **45** (1981), 3 - 22 [in Russian]. English translation; Math. USSR-Izv., **18**(1982), 1 - 17.
- [3] **A. Aziz**, *A new proof and a generalization of a theorem of De Bruijn*, Proc. Amer. Math. Soc., **106**(1989), 345 - 350.

- [4] **A. Aziz and N.A. Rather**, *Some compact generalizations of Zygmund-type inequalities for polynomials*, Nonlinear Studies, **6**(1999), 241 - 255.
- [5] **A. Aziz and N.A. Rather**, *L_p inequalities for polynomials*, Glasnik Matematicicki, **32**(1997), 39 - 43.
- [6] **R.P. Boas, Jr. and Q.I. Rahman**, *L^p inequalities for polynomials and entire functions*, Arch. Rational Mech. Anal., **11**(1962), 34 - 39.
- [7] **N.G. Bruijn**, *Inequalities concerning polynomials in the complex domain*, Nederal. Akad. Wetensch. Proc., **50**(1947), 1265 - 1272.
- [8] **K.K. Dewan and N.K. Govil**, *An inequality for self-inversive polynomials*, J. Math. Anal. Appl., **45**(1983), 490.
- [9] **G.H. Hardy**, *The mean value of the modulus of an analytic functions*, Proc. London Math. Soc., **14**(1915), 269 - 277.
- [10] **P.D. Lax**, *Proof of a conjecture of P. Erdős on the derivative of a polynomial*, Bull. Amer. Math. Soc., **50**(1944), 509 - 513.
- [11] **M. Marden**, *Geometry of polynomials*, Math. Surveys, No. **3**, Amer. Math. Soc. Providence, RI, 1949.
- [12] **G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias**, *Topics in Polynomials: Extremal Properties, Inequalities, Zeros*, World scientific Publishing Co., Singapore, (1994).
- [13] **G. Polya and G. Szegö**, *Aufgaben und lehrsätze aus der analysis*, Springer-Verlag, Berlin(1925).
- [14] **Q.I. Rahman**, *Functions of exponential type*, Trans. Amer. Math. Soc., **135**(1969), 295 - 309.
- [15] **Q.I. Rahman and G. Schmeisser**, *L^p inequalities for polynomials*, J. Approx. Theory, **53**(1988), 26 - 32.
- [16] **Q.I. Rahman and G. Schmeisser**, *Analytic Theory of Polynomials*, Oxford University Press, New York, 2002.
- [17] **M. Riesz**, *Formula d'interpolation pour la dérivée d'un polynome trigonométrique*, C.R. Acad. Sci. Paris, **158**(1914), 1152 - 1254.
- [18] **A.C. Schaffer**, *Inequalities of A. Markov and S. Bernstein for polynomials and related functions*, Bull. Amer. Math. Soc., **47**(1941), 565 - 579.
- [19] **W.M. Shah and A. Liman**, *Integral estimstes for the family of B-operators*, Operators and Matrices, **5**(2011), 79 - 87.

[20] **A. Zygmund**, *A remark on conjugate series*, Proc. London Math. Soc., **34**(1932), 292 - 400.

N.A.Rather

P.G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar-190006, India
E-mail: dr.narather@gmail.com

Mushtaq A.Shah

P.G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar-190006, India
E-mail: mushtaq022@gmail.com

Received 2 October 2012

Published 5 November 2012