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An Operator Preserving L, Inequality Between Polyno-
mials

N.A.Rather*, Mushtaq.A.Shah

Abstract. If P(z) is a polynomial of degree at most n which does not vanish in |z| < 1, then
it was recently formulated by Shah and Liman [Integral estimates for the family of B-operators,
Operators and Matrices, 5(2011), 79 - 87| that for every R > 1, p > 1,

R™| Al + | Mol
B[P o pl(2)||. < —— 1200 ipioy
B[P o pl(2)]l, < e 1P ()],
where B is a Bjp-operator with parameters A\, A1, A2 in the sense of Rahman and Schmeisser [16],

3
p(z) = Rz and A = M\ + /\1%2 + /\2%. Unfortunately the proof of this result is not correct.
In this paper, we present a refined L,-inequality for B,-operators which not only provide a correct
proof of the above inequality as a special case but also extend the inequality for 0 < p < 1 as well.
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1. Introduction and Statements of Results

Let P, denote the space of all complex polynomials P(z) = Z?:() ajzj of degree at
most n and let P, (A) be the set of polynomials in P, having all zeros in A C C. We write
U={ze€C:|z|=1}, A={2€C:|z| <1}, A its closure, A = C\ A and Q = C\ A.
For P € P, define

2w
PG = o {5 [ 1os [Pl an}
2 0

ren, {5 [

1P(#)ll oo = max | P(2)|

p 1/p
P(e’e)’ dH} , 0<p<oo,
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and denote for any complex function p : C — C the composite function of P and p,
defined by (Pop)(z) =P (p(z)) (2€C), as Pop.
If P € P,, then
PR, <nlPG,, p>1 (1)

and

IP(R2)|, < R"|[P(2)[l,, R>1, p>0. (2)

Iy
Inequality (1) was found out by Zygmund [20] whereas inequality (2) is a simple conse-
quence of a result of Hardy [9]. Arestov [2] proved that (1) remains true for 0 < p < 1
as well. For p = oo, the inequality (1) is due to Bernstein (for reference, see [11], [15],
[17]) whereas the case p = co of inequality (2) is a simple consequence of the maximum
modulus principle (see [12], [13], [16]). Both the inequalities (1) and (2) can be sharpened
if we restrict ourselves to the class of

polynomials Pp, = P,(A°). In fact, if P € Py, then inequalities (1) and (2) can be
respectively replaced by

1P
PR <n——=—=L 0<p<oc (3)
17Ol <
and
P, < 2 by RS o @)
Ty b 1 p>0

Inequality (3) is due to De-Bruijn [7] (see also [3]) for p > 1. Rahman and Schmeisser [15]
extended it for 0 < p < 1 whereas the inequality (4) was proved by Boas and Rahman [6]
for p > 1 and later it was extended for 0 < p < 1 by Rahman and Schmeisser [15]. For
p = 00, the inequality (3) was conjectured by Erdés and later verified by Lax [10] whereas
inequality (4) was proved by Ankeny and Rivlin [1].

Rahman [14] (see also Rahman and Schmeisser [16, p. 538]) introduced a class B, of
operators B that maps P € P, into itself. That is, the operator B carries P € P, into

BIPI(:) = 0P(z) + 4 (22) L, (22)7 228, -

where Ao, A1 and Ay are real or complex numbers such that all the zeros of

-1
u(z) = Ao +nriz+ %)\222, (6)
lie in the half plane
2] < [z = n/2] (7)
and proved that if P € P,, then
[B[P o pl(2)] < R"[A][[P(2)|| for zeU (8)
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and if P € P2, then as a special case of Corollary 14.5.6 in [16, p. 539], we have

1 n
B[P o pl(2)] = 5 {B"|Al + [Aol} [P(2)]l for z €U, 9)
where p(z) = Rz, R > 1 and
2 3
-1
A= A0+A1%+A2%). (10)

Inequality (9) also follows by combining the inequalities (5.2) and (5.3) due to Rahman
[14].

As an extension of inequality (9) to Lp-norm, recently Shah and Liman [19, Theorem
1] proved:

Theorem A. If P € P,, then for every R>1 and p > 1,
IBIP o pl(2)l, < R"A[[|[P(2)]l,,,
where B € By, p(z) = Rz and A is defined by (10).

While seeking the desired extension of inequality (9) to L,-norm, they [19, Theorem
2] have made an incomplete attempt by claiming to have proved:
Theorem B. If P € P, then for each p>1, R > 1,

_ RYAL+ |

IBLP e PG, = =7

1P, (11)

where B € By, p(z) = Rz and A is defined by (10).

Further, it has been claimed in [19] to have proved the inequality (11) for self-inversive
polynomials as well.

Unfortunately the proof of inequality (11) and other related results including the key
lemma [19, Lemma 4] given by Shah and Liman is not correct. The reason being that the
authors in [19] deduce:
line 10 from line 7 on page 84, line 19 on page 85 from Lemma 3 [19] and line 16 from line
14 on page 86, by using the fact that if P*(z) = 2" P(1/Z), then for p(z) = Rz, R > 1 and
zeU,

|B[P" o p](2)| = [B[(P" © p)*](2)],
which is not true, in general, for every R > 1 and z € U. To see this, let
P(2) = anz" + -+ a2+ -+ a1z +ag
be an arbitrary polynomial of degree n, then

P*(2) = 2"P(1/2) = dp2" + @1 2" 4 -+ @2 P 4+ .
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Now with A; = A\;n/2 and Ay = A\9n?/8, we have

BlP*opl(2) =Y (Ao + Ai(n— k) + Ag(n — k)(n — k — 1)) @2""*R"F,
k=0

and in particular for z € U, we get

n

Bwﬁom@):R%WEIQO+Aﬂn—k)+Agn—kxn—k—1»%(_)ﬁ
k=0

whence

n

|B[P* o p](2)] = R" @0+Aﬂn—k%ﬂbm—kﬂn—k‘lW%(%Y'

k=0

But
IBI(P* 0 p)")(2)| = B"

?

2N\ k
um+mk+Aww—1»%(E)

k=0

so the asserted identity does not hold in general for every R > 1 and z € U as e.g. the im-
mediate counterexample of P(z) = 2" demonstrates in view of P*(z) = 1, |B[P* o p|(2)| =
|Ao| and

|BI(P* 0 p)*](2)] = Ao + Ar(n®/2) + don®(n — 1)/8| (z € U).

The main aim of this paper is to establish a sharp L, extension of inequality (9) for
0 < p < oo which includes the correct proof of inequality (11) as a special case. In this
direction, we present the following compact generalization inequalities (1), (2) and (9),
which is also a refinement of inequality (11) and extends it for 0 < p < 1 as well.

Theorem 1. If P € P} and m = mzrﬁP(z)\, then for every real or a complex number

0, with |0 <1,R>1 and 0 < p < o0,

IR™Az + Ao
I ]

R*|A] — [Aoym
2

HBwom@y+ﬁ EIP(2)]|

P (12)
P
where B € By, p(z) = Rz and A is defined by (10). The result is sharp, as is shown by
the extremal polynomial P(z) = az" +b, |a| = |b|] # 0.

Remark 1. If we choose \g = 0 = A2 in (12), we get for every real or a complex
number §, with |§ <1,R > 1 and 0 < p < o0,

an—l

nR" lm
- S -
s 1+=,

Hpmz) ot 1P, .
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which, in particular, yields inequality (3). Next if we take Ay =0 = Ay and 6 = 0 in (12),
we get inequality (4).
By the triangle inequality, the following result immediately follows from Theorem 1.
Corollary 1. If P € P, and m = miq|P(z)|,then for every real or a complex number
2|=

0, with |6 <1,R>1 and 0 < p < o0,

(B"A] — [Ao[)m
2

< BMALE Aol
11+ 2],

HB[P o pl(z) 49 1P, (13)

p

where B € By, p(z) = Rz and A is defined by (10).

Letting p — oo in (12) and choosing the argument of ¢ suitably, we get the following
refinement of inequality (9).

Corollary 2.If P € P2, and m = l?gi'rﬂP(z)\,then for every real or a complex number

5, with |§ < 1,R > 1,
1 n n
[BIP o pl(2)] = 5 {(B"|Al+ M) [P(2)lloo — 0 (R*|A] = [Aol)ym} for ze U, (14)
For ¢ = 0, inequality (14) reduces to inequality (9)

For § = 0, Theorem 1 reduces to the following result:
Corollary 3.If P € Py, then for every R>1 and 0 <p < o0,

R"Az + )\
1B + Xolly by (15)

IBLP e Pl < o

p?

Remark 2. Corollary 2 not only validates Theorem B for p > 1 but also extends it
for 0 < p <1 as well.

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma
follows from Corollary 18.3 of [11, p. 65].

Lemma 1. If B € B, and P € P,(A), then B[P] € Pn(A).
Lemma 2. If P € P,(A°), then
[BIP o pl(2)] < |B[P"opl(z)] for zeU, (16)

where B € By, and p(z) = Rz with R > 1 arbitrary.
Lemma 2 is due to Rahman [14].
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Lemma 3. If P € P,(A), then
|B[P o p|(z)| > R"|Alm for ze€U, (17)
where B € By, m = Jl\z{glz\P(zﬂ and p(z) = Rz with R > 1 arbitrary.
Proof of Lemma 3. By hypothesis all the zeros of P(2) lie in A and
m|z|" < |P(2)| for zeU.

we first show that the polynomial G(z) = P(z) — amz" has all its zeros in A for every real
or complex number o with av € A. This is obvious if m = 0, that if P(z) has a zero on U.
Henceforth, we assume P(z) has all its zeros in A, then m > 0 and it follows by Rouche’s
theorem that the polynomial G(z) = P(z) — amz™ has all its zeros in A for every complex
number o € A and hence all the zeros of G(Rz) = P(Rz) — amR"z" lic in A. Applying
Lemma 1 to G(Rz), we conclude that B[G o p](z) = B[P o p](z) — amR™Az" has all its
zeros in A. This implies

|B[P o p](2)| = R"[Al[z]"m for ze€ A, (18)
which proves Lemma 3.
Lemma 4. If P € P,(A°), and m = MH}‘P(Z)' then

|BIP o pl(2)] < |B[P" 0 pl(2)| = (R"A = [Ao[)m for z €U, (19)

where B € By, and p(z) = Rz with R > 1 arbitrary.
Proof of Lemma 4. By hypothesis all the zeros of P(z) lie in A¢ and

m < |P(z)] for zeU. (20)

We show F'(z) = P(z) + Am does not vanish in A for A € A. This is obvious if m = 0,
that if P(z) has a zero on U. So, we assume P(z) has all its zeros in €, then m > 0 then
by maximum modulus principle, it follows from (20),

m < |P(z)| for ze€ A. (21)
Now if F(z) = P(z) + Am = 0 for some z = 7y with 2y € A, then
P(Z()) +m=0.

This implies
P(z)| = |AMjm <m for zy € A,

which is clearly a contradiction to (21). Thus the polynomial F(z) does not vanish for
2 € A for every A € A. Applying Lemma 2 to F(z), we get

[BIF o pl(2)] < |B[F" o pl(z)] for zeU,
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Replacing F(z) by P(z) + Am, we get

|B[P o p](z) + AmXo| < |B[P* 0 p](z) + AmR"A2"| for z€ U. (22)
Choosing argument of A, with |[A| = 1 in the right hand side of (22) such that

|B[P* 0 p|(2) + AmR"Az"| = |B[P* o p|(2)| — mR"|A||z|" for z €U, (23)

which is possible by Lemma 3, we get

|BIP o p](2)| = m|Xo| < [B[P" o pl(z)] —mR"|A[|2]* for z €U,
Equivalently, for z € U, we have

|B[P o p|(2)] < B[P o pl(2)| — (R"[A] = [Ao])m.

This completes the proof of Lemma 4.

Next we describe a result of Arestov [2].
For v = (70,71, -+, V) € C"™ and  P(z) =" _ja;27 € P,, we define

CyP(z) = Z via2.
5=0

The operator Cy is said to be admissible if it preserves one of the following properties:

(i) P € Pa(A),

(ii) P € Pp(A°). The result of Arestov may now be stated as follows.

Lemma 5. [2, Th.2] Let ¢(x) = 1(logx) where ¢ is a conver nondecreasing function
on R. Then for all P € Py, and each admissible operator C.,

[T o(erennms [

where ¢(vy) = max (|v], |7n|)-

2m

6 (c()|P(?)]) do

In particular Lemma 5 applies with ¢ : # — 2P for every p € (0,00) and with ¢ : z —
log x as well. Therefore, we have for 0 < p < oo,

{ ” a,P(e“’)\pde}l/p <en{ [ "

From Lemma 5, we deduce the following result.
Lemma 6. If P € P,(A°), then for every p >0, R > 1 and « real, 0 < o < 2m,

/271'
0

P(e) ‘p de} " (24)

27
BIP o pl(€) ¢ + B[P* o p]*(e“g)‘pdé? < |RMAE + X / ’P(e"g)‘pd«?, (25)
0
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where B € By, p(z) = Rz, B[P* o p|*(z) = (B[P* o p|](2))* and A is defined by (10).
Proof of Lemma 6. Since P € P,(A°) and P*(z) = 2"P(1/Z), by Lemma 2 , we
have

[BIPopl(2)] < |B[P"opl(z)] for zeU. (26)

Also, since P*(Rz) = R"2"P(1/R%),

B[P* o p|(z) = MR"2"P(1/RZ)
Y (%) (nR”z“—lp(l/Rz) - R”‘lz”_zP’(l/Rz))

<% (5) (o277

2 VR PR + R (T

and therefore,

B[P" o p]"(2) = (B[P" o p](2))"

- -nr —n¥n-1)\ _,

_ - n?n—-1 2
- ( 1% + )\Qm) R"2P'(2/R) + )\Q%Rn_QZQPN(Z/R).
Also,
|B[P* o p](2)| = |B[P* o p|*(2)| for z€U.
Using this in (26), we get
|B[P o p|(2)| < |B[P*0op]*(z)| for z€U, R>1.

Since (P* o p) € Pp(A), by Lemma 1, B[P* o p] € P,(A), therefore, B[P* o p|* € P, ().
Hence by the maximum modulus principle,

|B[P o pl(2)| < |B[P* o p|*(2)| for ze€A. (27)
A direct application of Rouche’s theorem shows that with P(2) = a,2" + - -+ + ao,
CyP(2) = BIP o pl(2) €' + B[P* o p]*(2),

2 3 -1 ) _
= {Rn <)\0 + )\1% + )\2%) e + )\0} apz"

_ 2 _n3(n—-1 p
N {R” ()xo + >\1% + AQ%) —|—€"(}/\0}a07

has all its zeros in A€, that is, CyP € P,(A°). Therefore, C., is an admissible operator.
Applying (24) of Lemma 5, the desired result follows immediately for each p > 0.
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We also need the following lemma due to A.Aziz and N.A.Rather [5].

Lemma 7. If A, B,C are non negative real numbers such that B + C < A then for
every real «,

(A —C)e™ +(B+C)| < |Aci"+B|. (28)
3. Proofs of the Theorems

Proof of Theorem 1. By hypothesis P € Py, p(z) = Rz and R > 1, therefore, by
Lemma 4,we have

[BP o p|(2)| < [B[P" o pl(2)] = (B"|A] = [Mo])m for z €U, (29)
Since B[P* o p]*(z) is the conjugate of B[P* o p](z) and
IBIP* o pJ*(2)] = |BIP* o pl(2)], 2 €U.

Therefore (29) can be written as

B[P o p](2)| + w < B[P o p*(z)| - LA > DD o e w30
Taking
A=|B[P*op]*(2)], B=|B[Pop|(z)]
and

(R™A] — [Xo[)m

C:
2

in Lemma 7 and noting by (30) that
B+C<A-C<A,

we get for every real o,

H BIP* o o*(2)] — (R"[A] - |Ao\)m}em+ { BIP o J(2)] + (R"|A| - |/\0\)m}’

< [[B[P* o p*(2)| € + | BIP o p] ()] |

This implies for each p > 0,

7‘{‘3[13*0/)]*(61'@) _ (Rn|A|;|>\O|)"”}em+{‘B[Pop}(eie)‘_F (R”IAI;IAoDde@
0

2
< / [BIP* o @) 4 [ BLP o gl )] |ao.

(31)
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Integrating both sides of (31) with respect to « from 0 to 2w, we get with the help of
Lemma 6 for each p > 0,

T RYA| - |A RA| — |
//‘{‘B[P*Op]*(ew)‘—( | |;| O|)m}+€m{’B[POp](ew)‘—|—( ‘ |;| ODmedea
00

21 21

</ O/ [BIP o ()

[BIP* 0 pl" ()" + | BIP < pl(e"")| | da }ao

o 1 ‘B[P o] (e“’)‘ ’pdé?da

o @

3

—

IN IN
— O
O’\g_.) O’\g_.) o\.vl:\f)

o @

5

BIP* o p*(¢®)ei® + B[P o p(e?) ‘pda}de

o @

5

BIP* o p*(®)ei® + B[P o p](?) ’pdﬂ}da

IN
—

o @

3

27
|R"Ae™ + )\_o‘pdoz/ ‘P(ew)‘pdﬁ. (32)
0

VAN
o

Now it can be easily verified that for every real number o and r > 1,
e > 1+ e

This implies for each p > 0,

2w 2T
/ ]r—i—em‘pdaz/ ‘1+em]pda. (33)
0 0
. RYA| — A
If | B[P o p](e?)| + (A 5 Poym # 0, we take
) R™A| — |\
|B[P* o pl* ()] _M
T =
. RMA| — [No|)m
BLP o pl(ei) + LA ol
then by (19), » > 1 and we get with the help of (33),
7 RPA| — |A R™A| — |\
. n — . ) o — p
/H‘B[P*Op]*(ew) _( | |2| O|)m}+€m{‘B[POpK€ZG) +( | |2| ODm}‘da

0
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2T * *( (Rn‘A‘_P‘ODm P
| o BN = Dol [ [ [P Pl ]
— | |Bip e pl(e)] + SRR [l o P Dalm | ™
i’ |B[P o p] ()] + 5
27 * *x( 0 (Rn‘A|_|)\ODm ?
ol 4 BAL= Do | [ o[BI A - 2
= ‘B[Pop}(e”) —|—f e + ) (R™MA] — [Xo])m da
/ B[P o p)(e®)] + 5
. P 21
> [t gl + EEFRR [y e (39
0

(B™A] = [Ao])m
2

This inequality is trivially true for |B[P o p](ew)’ + = 0. Using this in

(32), we conclude that for each p > 0,

o
/‘B[Pop](ew)’ + (R"|A] ; [Ao|)m
0

27
p .
d@/ 1+ ¢ Pda
0

2m ) 2m o p
< / |R"Ae™ 4+ Xl da/ P(e)|" do,
0 0
This gives for every real or complex number § with|d <1 and « real

27
/ ‘B[P o pl(e?) + 5w

0

21
p .
d6/ 1+ ¢ Pda
0

2m 27
< / |R"Ae™ 4+ X da / P ae,
0 0

from which Theorem 1 follows for p > 0. To establish this result for p = 0, we simply let
p — 0+.
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