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Abstract. Multigraph is a non-linear data structure, a generalization of the important data struc-
ture ‘graph’. There are many real life situations, in particular in the network systems, which cannot
be modeled into graphs but can be well modeled into multigraphs. Consequently, those situations
cannot be dealt with the theory of graphs, but by the theory of multigraphs only. It is quite ob-
vious that since the multigraphs are a generalized model of graphs, the theories and properties of
graphs cannot be automatically granted to hold good in the theory of multigraphs, unless studied
and verified rigorously in the context of multigraphs. In this paper the authors make some the-
oretical characterizations of multigraphs. Various useful fundamental operations are defined and
their properties are studied. A method on how to store the data structure multigraph in computer
memory and how to retrieve it back is proposed. A number of propositions are proved on the
theory of multigraphs, and it is observed that these properties and theories reduce to those of the
graph theory as special cases.
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1. Introduction

Graph theory [1-4,12] has wide applications in several branches of Engineering, Science,
Social Science, Medical Science, etc. to list a few only out of many. Graph is also an
important non-linear data structure in Computer Science. Multigraph [1,6-9,11,12] is a
generalized concept of graph where multiple edges (or arcs) may exist between vertices.
Many real life situations of communication network, transportation network, etc. cannot
be modeled into graphs, but can be well modeled into multigraphs because of the scope of
dealing with multiple edges (or arcs) connecting a pair of nodes. A huge and rich volume
of literature is available in the area of ‘Graph Theory’, but unfortunately the ‘Theory of
Multigraphs’ has not so far developed upto that extent to meet the present requirements
to deal with real life network problems.
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Since the notion of multigraphs [1,6-9,11,12] is an extension of the notion of graphs, we
cannot take it granted that all the rich theories and properties of graphs will be true in case
of multigraphs too, unless studied rigorously in the context of multigraphs. There is a gen-
uine need to make algebraic characterization of multigraphs, to define various fundamental
operations on multigraphs and then to study the various properties of multigraphs.

In this paper we have done a theoretical work on these issues of multigraphs. Besides
that, considering a multigraph as an important non-linear data structure, we have proposed
a method on how to store a multigraph in computer memory and how to retrieve it.

2. Preliminaries

In this section we present basic preliminaries about multigraphs from the existing literature
[1,6-9,11,12]. A multigraph or pseudograph is like a graph but it is permitted to have
multiple edges (also called ”parallel edges”) that have the same end nodes. Thus two
vertices may be connected by more than one edge. Some authors also allow multigraphs to
have loops, i.e. an edge that connects a vertex to itself, while others call these pseudographs
reserving the term multigraph for the case with no loops. Throughout in our work here,
we will work with multigraphs, not pseudographs (i.e. we will not consider the cases of
loops).

Obviously, a classical graph [1-5, 10, 12] is a special case of multigraph where between a
pair of vertices there is no multi-edges, only single edge (or no edge). The following diagram
(Figure 1) shows a multigraph consisting of four cities A, B, C' and D in a country, where
the edges denote bus routes and alternative bus-routes from one city to another, with the
distances mentioned in miles against each edge.

Fig. 1 A multigraph G

2.1. Multigraph

A multigraph G is an ordered pair (V, F) which consists of two sets V and E, where V is
the set of vertices (or, nodes), and F is the set of edges (or, arcs).

Here, although multiple edges or arcs might exist between pair of vertices but no
loop exists. Multigraphs may be of two types: undirected multigraphs and directed
multigraphs. Figure 1 , shown earlier, shows an undirected multigraph and the Fig-
ure 2 shows a directed multigraph G = (V, E), where V. = {4, B, C, D} and E =
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{AB;, ABsy, BA, AD, AC, CB, BD, DB}. In an undirected multigraph the edge (3, j)
and the edge (4, ), if exist, are obviously identical unlike in the case of directed multigraph.

Fig. 2 Multigraph G

As an example, multigraphs might be used to model the possible flight connections
offered by an airline. In this case the multigraph would be a directed graph with pairs of
directed parallel edges connecting cities to show that it is possible to fly both to and from
these locations.

2.2. Submultigraph

A multigraph H = (W, F)) is called a submultigraph of the multigraph G = (V, E) if W
CVandF CE.

The Figure 3 shows a submultigraph H of the multigraph G of Figure 2.

Al
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Fig. 3 Submultigraph H

3. Characterization of Multigraphs

It is fact that many of the real life network models are not simple graphs, but multigraphs.
A lot of research on technological advancement on Communication Network, Road Trans-
portation System, Airlines Network, etc. are being reported in the journals for which the
theory of graph is not an appropriate tool to deal with, but the theory of multigraphs.
Unfortunately, there is not much literature available on the theory of multigraphs. In this
section we make some useful characterization of the multigraphs.
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3.1. Order of a Multigraph

The order of a multigraph G = (V, E) is the cardinality of its vertex set V', and is denoted
by O (G). Thus, order of a multigraph G is a non-negative integer.

3.2. Null Multigraph and Edgeless Multigraph

If O(G) = 0, then the multigraph G is called a ‘null multigraph’. Obviously, for a
null multigraph G both V and E are null sets. Thus the null multigraph is a trivial
submultigraph of every multigraph. However, a multigraph G = (V, F) is called an
‘edgeless multigraph’ if E is null set. In this sense, a null multigraph is a special case
of edgeless multigraphs. Where the null multigraph is an absolutely unique object, but
an edgeless multigraph is not. Order of an edgeless multigraph may be 0 or any natural
number. Clearly, for an edgeless multigraph it does not matter if we call it a directed or
undirected multigraph as it does not have any edge.

3.3. Degree of a Vertex of a non-null Multigraph

In an undirected multigraph, the degree of a vertex is the number of edges adjacent to
that vertex. The indegree and outdegree of a vertex can be calculated only in a directed
multigraph. The number of arcs incident to a vertex A from the other vertices is called
the indegree of the vertex A; and the number of arcs outgoing from a vertex A to the
other vertices is called the outdegree of the vertex A. Degree of a vertex in a directed
multigraph is the sum total of its indegree and outdegree.

Suppose we want to find out in how many routes a city is connected directly with all
other cities. Degree of node for that particular City helps in finding out the number of
routes.

3.4. Adjacent edge (arc) set of a vertex

For an undirected multigraph, the collection of all edges of a vertex is called the ‘adjacent
edge set’ of that vertex. For a directed multigraph, the collection of all arcs (incident to
or outgoing from) of a vertex is called the ‘adjacent arc set’ of that vertex.

Example 3.1

Consider the following undirected multigraphs G1 = (V1, E1) as shown below in the Fig-
ures 4, where V1 = {4, B, C} and

By, = {AB, BC, ACy, ACy} .
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AC, ac,

Fig. 4 An undirected multigraph G,

For the vertex C of this multigraph G, the adjacent edge set is {ACy, ACy, BC}.
Example 3.2

Consider the following directed multigraphs Gy = (Va, E») as shown below in the Figures
5, where V5 = {L, M, N} and

Ey={MNy, LN, LM, ML}.

Fig. 5 An undirected multigraph Gy

For the vertex L of this multigraph Go, the adjacent arc set is {LM, ML, LN}

There is no justification to say that the results which are true in the theory of graphs
will also be true in the theory of multigraphs. We now analyze and prove an important
result for multigraphs, analogues to the existing result on graph theory.

Proposition 3.1

Sum of the degrees of the vertices of a multigraph is twice the number of edges (or, arcs)
in that multigraph.

Proof :

An edge (or, arc) is identified with two distinct vertices. Thus, when degrees of vertices
are counted each edge is counted twice, once for each of the two vertices which are linked
with this edge. Therefore, sum of the degrees of the vertices of a multigraph is twice the
number of edges in that multigraph. B

Example 3.3

Let us consider the multigraph G as shown below in Figure 6 below :
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Fig.6 Multigraph G

Here degrees of the vertices A, B, C' and Dare respectively 5, 6, 2, and 3. And the
number of edges is 8. Clearly, sum of the degrees of the vertices is twice the number of
edges.

Proposition 3.2

Every multigraph has even number of odd vertices.

Proof :

Consider a multigraph G. Suppose that the sum of the degrees of the odd vertices in G is
y; and the sum of the degrees of the even vertices in G is x (which is always even).

.. Total sum of the degrees of the vertices of the multigraph G = x +y
Now, x + y = twice the number of edges (using proposition 3.1)

= even number, z (say)

.y =z —x = even number. B

Proposition 3.3

In a directed multigraph, the sum of the outdegrees of all the vertices is equal to the
number of arcs, which is equal to the sum of all the indegrees of all the vertices.

Proof:

The outdegree of a vertex is the number of arcs adjacent from that vertex. So when we
add all the outdegrees, each arc is counted exactly once.

Likewise, when the indegrees are summed up, each arc is counted exactly once. Thus
the sum of the outdegrees and the sum of the indegrees are both equal to the total number
of arcs in a directed multigraph. W
Example 3.4
Consider the directed multigraph G as in Figure 2. We see that, indegrees of vertices
A, B, C and D are respectively 1, 4, 1 and 2 whose sum is 8. Also we see that outdegrees
of vertices A, B, C' and Dare respectively 4, 2, 1, 1 whose sum is 8. And the number of
edges is also 8.

Graph is an important non-linear data structure. The multigraphs being the gener-
alized concept of the graphs, are also non-linear data structures. We must have some
technique on how to store a multigraph in a computer memory, and how to retrieve a
multigraph from the memory. For this, we define adjacency matrix of a multigraph.

3.5 Adjacency Matrix of a non-null Multigraph
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The adjacency matrix of a non-null multigraph of order n having the vertex set V =
{V1, Vo, V5, ..., V,,} is the

n X n integer matrix A = [a;;] in which a;; is the number of edges (or, arcs in case of
directed multigraph) adjacent from vertex V; to vertex V.
Clearly, a;; =0, Vi=1,2, ..., n; and also if the multigraph is an undirected multi-
graph then
Q5 :ajz-,Vi,j: 1, 2, ey N

For any edgeless multigraph, the adjacency matrix is a null square matrix, but for the null
multigraph the adjacency matrix is undefined (does not exist).

Example 3.5

Let us consider the directed multigraph G, as shown below (in figure 7 ) :-

Fig. 7A directed multigraph G

The adjacency matrix of the multigraph G is

P Q [R T[S

P |0 2 |1 1
A=[Q [1 0 |0 1
R |0 1 |0 0

S |o 1 |0 0

Example 3.6
Consider the undirected multigraph Gy, as in Figure 4, for which the adjacency matrix B
is given by

A B [C
A o |1 |2
B_B 1 0 1
C [2 [1 [0

Looking at the adjacency matrix we can immediately find out how many routes are
coming in a particular city from another city, or coming out of a city to another city. In
the adjacency matrix, a row-head represents the city from which a particular direct route
has started, i.e. it is the starting node and a column-head represents the city to which a
route would end, i.e. it is the end node.
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Thus, by accessing the elements of the adjacency matrix from the memory, it is easy
to get the set V and the set E, and hence to retrieve the multigraph itself (an isomorphic
multigraph, in fact).

Proposition 3.4 (i)

In the adjacency matrix of an undirected multigraph, the sum of the entries of the row (or
column) corresponding to a vertex is its degree, and sum of all the entries of the matrix
is twice the sum of the number of edges in the multigraph.

Proof :

Suppose that the vertex set of an undirected multigraph G is V' = {1, 2, ..., n}. In its
adjacency matrix A = [a;;], the entry a;; is equal to the number of vertices joining vertex
i to vertex j. When we add all the entries of the i row (or i*" column) we count the
number of edges adjacent to vertex.

.. The sum of the i*" row (or i'" column) is equal to the degree of the vertex i.
When all the entries in the matrix is added, we obtain the sum of the degrees of all vertices,
which is twice the sum of the edges. B
A similar proposition for the directed multigraphs is as below :

Proposition 3.4 (ii)

In the adjacency matrix of a directed multigraph, the sum of the entries in the row corre-
sponding to a vertex is its outdegree; the sum of the entries in the column corresponding
to a vertex is its indegree; and sum of all the entries of the matrix is equal to the number
of arcs in the multigraph.

Proof: straightforward.

3.5. Incidence Matrix of a non-null Multigraph

Suppose that we want to know whether a given city, say city A, is connected to the city
B; and if yes then how the route is, i.e. Is it inward or outward for A? Incidence matrix
is helpful in storing such information and data for a multigraph.

Consider a non-null multigraph G = (V, E), where # (V) = n and # (F) = r. The
incidence matrix of the multigraph G is a n x r matrix M = [e;;] which is defined as below
(i) If G is a directed multigraph :

For a given arc, if it originates from a particular vertex we mark the corresponding element
of the incidence matrix as 1. If the arc terminates at a particular vertex we mark it as -1
in the matrix. Otherwise, we mark 0 (zero) in the matrix.

(ii) If G is an undirected multigraph :

If an edge exists between any two vertices, we mark the corresponding element of the
incidence matrix as 1, else we mark it 0.

Example 3.7

Consider the directed multigraph G = (V, E) of Figure 2. Clearly, the incidence matrix
(E) of this multigraph G is :
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AB1| AB2|BA [BD |DB | AD | AC |CB
Al1l 1 -1 0 0 1 1 0
E=B|-1 -1 1 1 -1 0 0 -1
C|oO 0 0 0 0 0 -1 1
D|o 0 0 -1 1 -1 0 0
Example 3.8

Consider the undirected multigraph Gy = (V4, E1) as shown in the Figure 4. Clearly, the
incidence matrix of (7 is :

AB AC1 | AC2 | BC
Al1l 1 1 0
ES Bl1 0 0 1
clo 1 1 1

To make further characterizations of multigraphs, we like to introduce various funda-
mental operations on multigraphs which will be useful for fruitful applications of multi-
graphs in various application fields, in particular in network problems of any system where
the notion of these operations will be of genuine needs.

4. Operations on Multigraphs

In this section we define various fundamental operations on multigraphs. First of all we
introduce the operations : union and intersection on multigraphs.

4.1. Union of multigraphs

Union of two multigraphs G4 = (V4, E4) and G = (Vp, Ep) is the multigraph Gy =
(Vu, Ey), denoted by Gy = G4 |JGp , where Viy = V4 |J VB, and Ey = E4|J E5 -

We present below two examples, one showing the union of two undirected multigraphs
and the other showing the union of two directed multigraphs.
Example 4.1
Consider the two undirected multigraphs G; = (Vi, E1) as shown in earlier Figure 4
and G3 = (V3, E3) as shown in Figure 8 below, where V3 = {A, C, D, E} and E3 =
{ACy, AC3, CDy, CDy, AD, AE}.

Fig.8 Multigraph Gj3
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Then G |JG3 will be the undirected multigraph
G = (V, E), where V = {A,B,C,D,E} and FE =
{AB, BC, ACy, ACy, AC5, CDy, CDy, AD, AE} as shown in the Figure 9 below.
Y
B AL AL AD
AR

Fig. 9 Multigraph G = G1 |JG3

Example 4.2

Consider the two directed multigraphs Go = (Vh, E3) as shown in Figure 5 and
Gy = (Vi, Ey) as shown in Figure 10 where V43 = {M, N, P,Q} and E; =
{MQ, MP, MNy, MNy, NM, NP}.

Fig. 10 Multigraph G4

Then G5 |J G4 will be the directed multigraph G = (V, E), where V = {L, M, N, P, Q}
and E = {MN;, LN, LM, ML, MQ, MP, M Ny, NM, NP} as shown in following dia-

gram (Figure 11).
A

Fig. 11 Multigraph G = G2 |J G4
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4.2. Intersection of two multigraphs

Intersection of two multigraphs G4 = (V4, E4) and G = (Vp, Ep) is the multigraph
Gy = (Vy, Ey), denoted by
G, =Ga\Gp, where V, =V, Vg and E, = E4(\ EB.

We present below two examples, one showing the intersection of two undirected multi-
graphs and the other showing the intersection of two directed multigraphs.
Example 4.3
Consider the two undirected multigraphs G1 = (V4, E1) and G = (V3, Ej3), as shown
repectively in the Figure 4 and Figure 8 earlier.

Then G () G5 will be the undirected multigraph G = (V, E), where V = {A, C} and
E = {AC4} as shown in the Figure 12 below

A AC, C

Fig. 12 Multigraph G = G1(Gs

Example 4.4
Consider the two directed multigraphs Gy = (Va, E3) and G4 = (Vy, Ey), as shown re-
spectively in the Figure 5 and Figure 10 earlier.

Then Gs (G4 will be the directed multigraph G = (V, E), where V = {M, N} and
E = {M N} as shown in the Figure 13 below

O

Fig. 13 Multigraph G = G2 (G4

It is obvious that both union and intersection operations in multigraphs are commutative
as well as associative. i.e. the following results are true in the theory of multigraphs.

Proposition 4.1
If Gy, G2, G3 and G are undirected (directed) multigraphs, then

1. G1UG2:G2UG1

2. G1J(G2UGs) = (G1UG2)UGs
3. GlﬂGg :G2ﬂG1

4. G1(G2NGs) = (G1 1 G2) (G
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5. GUG =G
6. GNG =G
7. GU® =G
8. GN®=a
9. GUI =G
10. GO0 =0

where @ is the null multigraph, and @) is any edgeless submultigraph of G.

The following proposition is straightforward.

Proposition 4.2

For any undirected (directed) multigraphs G7, G2 and G3, the following distributive prop-
erties hold true :

L .G1U(G2NGs) = (G1UG2) N (G1UGs)
2. GiN(G2UGs) = (G1NG2)U(G1NG3)

4.3. Ring sum of Multigraphs

Ring sum of two multigraphs G4 = (V4, E4) and Gg = (Vp, Ep) is the multigraph
G = (V, E) denoted by G = G4 ® Gg, where V =V, |JVp and E = E4 ® Ep = the set
of edges those are either in F4 or in Ep, but not in both.

We present below two examples, one showing the ring sum of two undirected multi-
graphs and the other showing the ring sum of two directed multigraphs.
Example 4.5
Consider the two undirected multigraphs G; = (V3, E1) and G3 = (V3, E3) , as shown in
Figure 4 and Figure 8 earlier.

Then G; @ Gz will be the undirected multigraph G = (V, E), where V =
{A, B,C, D, E} and E = {AB, BC, ACy, AC5, CDy, CDy, AD, AE} as shown in the
Figure 14.

| AL, AL,
AD <

Lt T}

BC

ch,

Fig. 14 Multigraph G = G1 & G3
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Example 4.6
Consider the two directed multigraphs Go = (V2, E2) and G4 = (Vi, E4), as shown in
Figure 5 and Figure 10 earlier.

Then G2 @G 4 will be the directed multigraph G = (V, E), where V. ={L, M, N, P, Q}
and F = {LN, LM, ML, MQ, MP, MNy, NM, NP} as shown in Figure 15.

MP B Ma

Fig. 15 Multigraph G = G2 ® G4

The following results hold good in multigraphs for the operation of ring sum.
Proposition 4.3

If G1, G2, G5 and G are undirected (directed) multigraphs and @ is the null multigraph,
then

L. Gi®Gy =Gy ® Gy
2. G & G = The edgeless multigraph (V, ®) where V is the edge-set of G.
3. Ged=G

4.4. Insertion Operation in Multigraphs

Insertion is one of the most useful operations in network problems. Consider a situation
in which a new vertex has to be added in a multigraph network model.

The new vertex is to be incorporated with connectivities (inward or outward or both
ways) with some of the existing vertices of the multigraph or maybe with no connectivity
with any vertices (i.e. in an isolated way). Thus insertion of a node happens along with
its adjacent edge set (or, adjacent arc set), not independently.

If v; is a new vertex, then G + v; denotes a multigraph G 4 obtained by inserting (or
adding) v; to multigraph G,
defined by G4 = (Va, E4) where V4 = V{J{v;} and E4 = EJE,, , where E,, is the
adjacent edge set (or, adjacent arc set) of v;.

Example 4.7
Consider the undirected multigraph Gs = (V3, E3) as shown earlier in Figure 8.

Suppose that a new vertex K is to be inserted to the multigraph G, along with its
adjacent edge set Fx = {AK, EK,, EK,, KE, KD, DK}, which contains all the new
edges by which K has links can be connected to the other vertices of the multigraph Gj.
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Clearly, the resultant multigraph G shown in following Figure 16, will be given by
G=Gs3+ K (V, E), where
V=VsU{K}and E = E3|J Ex = {AC,, ACs, CD,, CDy, AD, AE, AK, EK,, EK,, KD}.

AD

KD
[~ co, -]

Fig. 16 Multigraph G = Gs + K

Example 4.8
Consider the directed multigraph Gy = (Vy, E4) as shown earlier in Figure 10
Suppose that we want to insert a new vertex K to the multigraph G4, along with its
adjacent arc set Fx = {KM, QK, KQ, PK}, which contains all the new arcs by which
K can be connected to the other vertices of multigraph Gj.
Clearly, the resultant multigraph G, shown below in Figure 17, will be given by G =
G4+ K = (V, E), where
V= V;LU{K} and B = E4UEK = {ACl, ACg, C’Dl7 CDQ, ‘AD7 AE, AK, EKl, FEKs, KD}

= @
Ok ~
KA 4
AP
A
PK
NP

Fig. 17 Multigraph G = G4 + K

4.5. Deletion Operation in Multigraphs

Deletion is an important operation in network problems. Sometimes it happens that some
nodes or some links are temporarily or permanently damaged in a network. Then for
efficient and best alternative solution of the problems pertaining to that network, we need
to consider the rest part only, instead of the whole part of the network.

There are two kinds of deletion operations in multigraphs, which are :
(a) Deletion of a vertex in a multigraph, and
(b) Deletion of an edge (arc) in a multigraph.
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4.5.1. Deletion of an edge (or arc) in a multigraph

If v; is a vertex in a multigraph G, then G' — v; denotes a submultigraph obtained by
deleting (or removing) v; from G. Thus, deletion of a vertex always implies the deletion
of all the edges (arcs) which are linked (incident or outgoing) with that vertex.

The notation * - ” is called ‘vertex subtraction’ operation.

Thus, G —v; = (V —{v;}, E— E,,) , where v; is the vertex to be deleted and E,, is the
set of all the edges (or arcs) adjacent to the vertex v;.

We present below two examples, one showing deletion of a vertex in an undirected
multigraph and the other showing deletion of a vertex in a directed multigraph.
Example 4.9
Consider the undirected multigraph Gs = (V3, E3) as shown earlier in Figure 8.

Let us delete the vertex A from the multigraph G3 and find out the resultant multigraph
G (Figure 18).

Clearly, G = G3 — A = (V,E), where V = {C,D,E} and E = E3 — E4 =
{AC1, ACs, CDq, CDy, AD, AE} — {AC1, ACs, AD, AE} = {CDy, CDs}.

o,
Fig. 18 Multigraph G =Gs — A

Example 4.10

Consider the directed multigraph G4 = (Vy, Ej4) as shown earlier in Figure 10 earlier.
Now let us delete the vertex M from the multigraph G4 and find out the resultant

multigraph G (Figure 19).

Clearly, G = G4y — M = (V,E), where V. = {N,P,Q} and F = E4 — E)y =

{MQ, MP, MNy, MNo, NM, NP} —{MQ, MP, MNy, MNy, NM} = {NP}.

O——@

Fig. 19Multigraph G = G4 — M

4.5.2. Deletion of an edge (or arc) in a multigraph

If e; is an edge (or arc) in a multigraph G, then G ~ e; denotes the submultigraph
obtained by deleting (or removing) e; from G. Deletion of an edge (or arc) does not affect
the vertices which it connects.
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The notation “ ~ * is called ‘edge subtraction’ (or, ‘arc subtraction’) operation.

Thus, G ~¢e; = (V, E —{e;}).

We present below two examples, one showing deletion of an edge in an undirected
multigraph and the other showing deletion of an arc in a directed multigraph.
Example 4.11
Consider the undirected multigraph Gs = (V3, E3) as shown earlier in Figure 8.

Now let us delete the edge AE from the multigraph G3 and find out the resultant
multigraph G (as shown in
Figure 20 ). Clearly, G = G3 ~ AE = (V, E), where V = V3 and E = E5 — {AE} =
{ACy, ACs, CDy, CD,y, AD}.

Fig. 20 Multigraph G = G3 ~ AF

Example 4.12
Consider the directed multigraph G4 = (Vy, E4) as shown earlier in Figure 10, where
Vy={M, N, P, Q} and

E, = {MQ, MP, MN,, MN,, NM, NP}.

Now let us delete the edge M@ from the multigraph G4 and find out the resultant
multigraph G (Figure 21).
Clearly, G = G4 ~ MQ = (V,E), where V. = V; and F = E; — {MQ}
{MP, MNy, MNy, NM, N P}.

X T T ¥ T hAP
LY
MNP

Fig. 21 Multigraph G = G4 ~ MQ

Proposition 4.4
If G = (V, E) is a multigraph, then G ~ e; = G & (V, {e;}), where e; is an edge of G.
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Proof :

Suppose that G @ (V, {e;}) = (Vr, ER).

Clearly, Ve =V JV =V, and

Er =Set of edges that are either in F or in {e;}, but not in both. = {E(Je;} —{Ee;} =
E —{e;}

S Ga(V {egh) =G ~e R

Proposition 4.5
Consider the multigraph G = (V, FE) where F is a non null set of cardinality n. Let
F={f1, fo, f3, ..., fr} be a non-null subset of E (i.e., 7 < n).
Then, (G~ fi) ~ fj=(G~ f;) ~ fiVi,j=1,2,3...., r where i # j.
Proof : (G~ fi) ~ f; = (V, (E={fi})) ~ [

=WV (E—{fi} ={fi})

=WV (E = A{fi £i}))

=V (E=A{f5 fi})

=(G7fj) " fim
The above result shows that in the expression (G ~ f;) ~ f; , the order of the appearances
of f; and f; is not significant.
Definition 4.5
Consider the multigraph G = (V, E) where F is a non null set of cardinality n. Let
F ={f1, fo, f3, ..., fr} be a non-null subset of E (i.e., 7 < n). Then, for the set F' of
edges, the edge-subtraction G ~ F is defined by

G F=((.... (G~ fi)~fo)~e i)~ fr)s

where the order of appearances of fi, fs, ..., fr is not significant.
The following results are now straightforward.
Proposition 4.6
If G = (V, K) is a multigraph and F, K are two disjoint subsets of F, then

1. G~ E =(V, ®), an edgeless multigraph.
22.G~¢=G

3. (G~F)~ K= (G~K) ~ F ,ie. the order of appearances of F' and K is not
significant here.
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5. Conclusion

The objective philosophy behind this work is that since the notion of graphs is a partic-
ular instance of the notion of multigraphs, the existing rich literature on the theory of
graphs cannot be granted to be automatically valid in the theory of multigraphs, unless
studied rigorously in the context of multigraphs. In this paper, we have made a theoret-
ical study on various important properties of multigraphs by making a number of useful
characterizations of multigraphs. Some fundamental operations on multigraphs are de-
fined and explained with examples. A number of useful propositions are proved, which
reduce to those of graph theory as special cases just. Since multigraph is a non-linear data
structure, a method is proposed on how to store multigraphs in computer memory and
how to retrieve them back. The complete work of this paper is of theoretical nature and
of fundamental requirements for any good application /exercise of multigraphs in the real
life problems of different branches of Engineering, Information Technology, Science, Social
Science, Medical Science, etc. to list a few only.
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