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Theoretical Study, Resolution, and Numerical
Simulation of an Atmospheric Pollution Model:
The Three-Dimensional Case
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Abstract. In this paper, a mathematical and numerical study is presented for a pollu-
tion model that describes the evolution of pollutant concentration within a cylindrical
bounded domain of the atmosphere. The model represents a time-dependent problem
in three-dimensional space, incorporating physical parameters relevant to atmospheric
dynamics. The effectiveness of the proposed method is evaluated through analytical er-
ror estimates and numerical simulations.The results demonstrate not only the accuracy
of the approximate solutions but also the stability and robustness of the method under
various discretization settings.This confirms the finite element method as a reliable com-
putational tool for modeling atmospheric pollution phenomena and sets the stage for
future studies involving more intricate models or real-world environmental data.
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1. Introduction

Addressing atmospheric pollution has become increasingly critical in the con-
text of global climate change and its far-reaching impacts on the environment,
human health, and societal systems. Air pollution is widely recognized as a major
contributor to ozone layer depletion and the rise in global temperatures, which
lead to severe environmental consequences. Due to its profound impact, this topic
has attracted widespread interest across various scientific disciplines, resulting in
a substantial volume of research and publications.This type of pollution model-
ing has been extensively investigated by numerous researchers (see, for example,
[4, 11, 14, 17, 18, 19, 20], reflecting its importance for both theoretical analysis
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and practical environmental applications.

In this paper, we focus on the mathematical modeling and numerical simulation
of atmospheric pollution in a three-dimensional bounded cylindrical domain. The
following model problem, which is analyzed in this work, describes the evolution
of the concentration of a pollutant in a bounded area of the atmosphere. It is

given by:
%—Fdiv(au)—kau:%(n%)%—MAzu-ny on Q=1[0,T] x C,
u=ug, on S,
%:d.uj ifx3:O7 (1)
597;‘3 =0, if x3 = H,
u(r,0) = g

where

e u(r,t) is the concentration of the pollutant at the time ¢ and at the point
r(z1, 22, 3);

u(r,0) = ug is the initial condition;

C' is a cylindrical domain with lateral surface S;

0? 0?
—— is the two-dimensional Laplace operator;

Ay = —
* Bx%—i_ﬁwg

« is the air velocity satisfying the continuity equation : div a = 0;

o = cte > 0 is the specific rate of deterioration of the pollutant;

@ > 0 and n > 0 are the horizontal and vertical diffusion coefficients re-
spectively;

e d > 0 is the sedimentation rate;
e f(r,t) is the term source of pollution;

This model describes the transport and dispersion of pollutants under the influ-
ence of advection, diffusion, and, optionally, chemical reactions. To solve (1), we
adopt the finite element method (FEM), [12] a well-established numerical tech-
nique based on subdomain discretization, which transforms the continuous prob-
lem into an equivalent discrete system suitable for computational analysis. The
main objectives of this study are threefold: to establish a well-posed mathemat-
ical framework for the three-dimensional pollution model, to develop a reliable
and efficient numerical scheme using Lagrange P1 finite elements, and to validate
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the model through computational simulations implemented in MATLAB.

The paper is organized as follows. Sect. 2 presents the reformulation and varia-
tional formulation of the proposed model. This section is also dedicated to the
theoretical analysis, where the existence and uniqueness of the solution are es-
tablished using variational methods and appropriate functional spaces. Sect. 3
describes the numerical approximation of the model problem. Sect. 4 presents the
numerical simulations, including error analysis and graphical results, to demon-
strate the accuracy and effectiveness of the proposed approach.

Additionally, it should be noted that, a similar study was carried out in the au-
thors’ earlier work ( [15, 21, 22]), addressing a specific case of the current problem
in a two-dimensional bounded domain, using two numerical methods: the finite
difference method and the finite element method.

2. Problem Modeling and Theoretical Analysis

1. New formulation of the problem

Now consider the new formulation of the problem (1). Let a;; be positive real
numbers and let A = (a;;) be the 3 x 3 square matrix, with entries a;;, given by:

w0 0
A= 0 p 0
0 0 n(xs)
It’s easy to see that:
0 ou 0 ou
%:awj(a]@xi) 8:1:3( (s )833 >—|—,u 2

We can reformulate the model problem (1) as follows:

+Zz 1 Bz +Uu—21]82 (aljax)"i'fv OD[O,T]XC

u—us, on S
g;‘g—du ifz3 =0 ’
u 3 J—
8903_0’ ifxg =H

with a;; € L>(C x [0,T]) we have

VE € R®, > aij&il; = pét + pés + nés.
]
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We show that these coefficients satisfy the ellipticity conditions. Knowing that
the domain is bounded, we will first assume that 7 is also bounded, that is,
Im > 0 such that M > 0,z3 € [0, H],0 < m < n(z3) < M. We trivially, show
that,

[ ]
V¢ € R, (A€, €) < Bl
A is uniformly bounded, for 8 = max(u, M),

VE € R, (A€, €) > 0|¢f

A is uniformly elliptic, for 8 = min(u, m).

2.2. Variational formulation of the problem

Assume f € L2(0,T; H(C)') and ug € L?(C). Let s = Sand I'g = [yUTy
so that 0C = I's UT . For test functions v € H(C), the weak form of (1) is

/auvdr%—/V'(au)vdr+a/uvdr:/V-(AVu)vdr+/fvdr.
c ot c c c c

Let u = u+ R, where R is a lift of the Dirichlet data on I'g (i.e., R € H'(C) and
R|rg = ug). After integration by parts and using the boundary conditions, one
obtains

/ 8uvdr—i—/ (a‘Vu)vdr—&-a/ uvdr—i—/ AVu-Vvdr—i—d/ nuvde —/ fodr,
c ot c c c To c
N (2)
where f collects the contributions of f and the lifting R (details omitted for
brevity; they follow the standard construction).

Define the bilinear form and linear functional

a(a,v) ::/(a-Vu)vdr—i-a/uvdr+/AVu-Vvdr+d/ nuw de,
C C C To
L(v) ::/ fodr.
C
Then (2) reads

<‘$,v> +a(@,v) = L),  w(0) = o, 3)
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Let us now introduce without proof the theorem of existence and uniqueness
of the solution of the problem

Theorem 2.1. Let f € L*(0,T,(H*(C) N HY(C))') and uy € L*(C). Assume
that o satisfies
[l oo
— <4
2 <%

where 0 = min(min(infn, u), o), for bounded n. Then, there exists a unique
solution uw = u(r,t) of the problem (1) such that:
u € L*(0,T, H*(C) N HY(C)) (0, T, L*(C)),
and 9
5 € LX(0.T.(H(©)n H'(C))).

3. Numerical resolution of the problem

This section is devoted to the numerical approach to the model problem (1).
The method employed is the P1 Lagrange finite element method ([67 7 ]), an
approximation technique based on subdomains, through which the continuous
problem can be replaced by an equivalent discretized problem.

3.1. Preliminaries: Finite Element Method (Linear Lagrange El-
ements)

Firstly, we begin by defining the basis functions, which are the barycentric
coordinates A\; with ¢ = 1,..,4, given by:

MN(E,5,2)=1-F—7§-2
)‘2(57 @\7 /Z\) =7
X(2,9,2) =7
M(Z,7,2) =2,

On an arbitrary tetrahedral element T' with vertices (x;,y;, 2i), i = 1,...,4, any
quantity within the element can be expressed through the following parameteri-
zation:

©(2,5.9) AT
y(@,4,2) | = X(@9,2y | =AMEY,2)
Z(iU,y,Z) )\i(ir\,g/],?)zz

Let Jx be the Jacobian matrix of A,
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X1 n Z1
_ T2 _ Y2 - 22
x - b y — M Z - )
€3 Ys z3
T4 Ya 24
iz
_ t— oN; o\; o\
Ja=1{ "y ( ox oy 0z )7
tz

then we have

T2 —T1 T3 —T1 T4—T1
Ia=\| vo—wv1 w—ym yva—wy1 | = (0i;)
29— 21 23— 21 24— 21

For any function f, we obtain
Vagef = (I Vayef.  Vayef = () 'Vagsf,

or equivalently,

1 o
(tJA)il = m(tC’m) with Ci,j = (—1)Z+]Ci7j and det Jp = 6V(T),

where (Cj ;) is the cofactor matrix. After calculations, we deduce that,

1 022033 — 032023 023031 — 021033 021032 — 022031
(‘Ja) "t = V(D) 013032 — 012033 011033 — 013031 012031 — 011032 |,
012023 — 013022 013021 — 011623 0116022 — 012621

Va2 = ("Jr) ' Vag32.

Consequently, the gradients of the reference coordinates can be expressed as:

022033 — 032023
- 1 1 — —
Vz = V(T 013032 — 012033 | = T(T)SIS?’ N 81854, (4)
012023 — 013022
ta3631 — 021033
1 1
Vy = 6V (T) 011033 — 013031 | = 6V (D) S154 N 5152, (5)
013021 — 011023
021032 — 022031
1 1 — —
Z = 019631 — 0116 = .
Vz 6V (T) 12031 — 011032 6V (T) S152 A 5153 (6)

011022 — 012021
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Transformation F7’:
We construct an affine bijection that transforms the reference tetrahedron 7p into
another tetrahedron 7' in the mesh, then we get

FT(sloy = sT i=1,...4,
x
where SiTO are the vertices of the reference tetrahedron and S} = | y; | are
Zi

the corresponding vertices of the tetrahedron 7. Since F' is an affine mapping
from R? — R3, it can be written in the form:

FT(2,7,2) = (a1 + B1Z + MY + K12, ag + BoZf + Y20 + K22, a3 + B3T + 737 + K3Z),

FT(()?O?O) = (xlaylvzl
FT(1,0,0) = (z2,y2, 22)
FT(0> 170) = (x37y3a 3) ’
FT(O707 1) = (x47y4724)

z
z

which allows us to deduce the following relation:

Iro —T1 X3 —T1 T4 — X1 i'\ T
T i~ o~ o~ ~
Fz,0,2)= | v2—y1 ¥3—¥y1 Ys—W y |+ n |,
zZ9 — 21 zZ3 — 21 Z4 — 21 ,/Z\ Z1
hence

i'\ T

FT(§7 /y\7 2) = JA :7/\ + Y1 . (7)
2 Z1

Since two finite elements are affine equivalents and the basis functions are
affine, it follows that:

A =No(F)y ' e X =AT o FT,

and therefore,
)‘Z(JI’ Y, Z) = )‘Z(i‘\a g//\v /Z\)

From (7) we also obtain:

8

x1
(FT)il(‘/E’y? Z) = (JA)il Yy - (JA)il Y1
z Al
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3.2. Spatial semi-discretization of the problem

We now present the spatial semi-discretization of problem (1). In this ap-
proach, the spatial domain is discretized using finite elements, while time remains

continuous. On the space L? (0, T, H2(0)> N C(O, T, LQ(C))>, consider the sub-

space V, C V with dim Vj, = Nj. Let u = uptug and up, = > uii, ug = > ug@,
and let v; = ¢; be the test functions. Then, the variational formulation of our
problem gives:

S uitt) [ ooy + > (o [ orsiir+o [ 6iosar+

i€l

+ AngiV(bde) ui(t) + Y ik do ( J ¢i¢jd€) ui(t) =

_ Z/figﬁjdr— > (a/Vd)i(bjdr—I—a/gbid)jdr—i-

i€

= [ AVONGdr) + iy Ao ( [ ¢i65de) [uy

where [ is the set of indices of the nodes of the mesh, J the set of indices of the
nodes belonging to I's and K the set of indices of the nodes belonging to I'y. We
then obtain the following system:

{ Mu/(t) + Ru(t) + Du(t) = B(t) (9)
u(0) = o ’

with Mij = / gbi(bjdr, Rij = / Ongﬁﬂ%dT + O'Mij +/(AV¢1)V¢]CZT, Dij =
C C C
m [ i0yde
To

B, = / fojdr — Z Rijug —dno Z szug‘ and 79 = 7(0).
¢ icJ ieJNK

3.3. Application of the Semi-Discrete Model

In this part, we apply the semi-discrete model based on formulation (8) to
the problem (1) and denote ¢7 = A\! = );. Then we obtain:

MY = /T i) dr,
RE = N5 +oM[+ Al

D, = dno/ Aikjde,
o
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with Ni?:/
T
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aVAAjdr and Af; = / (AVX;) VA dr,
T

BT — / fAde—Z (a/VAi)\jdr+0'/)\i>\jdr+/AV)\iV)\de)u:ig_
T
—dmo Y (/TAder)“g’

ieJ

1€JNK

@BiT:/Tf)\jdr—ZRz;ufg—

icJ

d’l]o Z Mwufg
i€JNK

Recall the exact integration formula we get the following relation:

)rtidr = nlV(T)

()41!...0[”+1!

/T (AT (AT,

Now compute the previously defined matrices:

e The mass matrix (Mg),

V
2 —
/T/\Zdr— 10

then we deduce:

(n+ar+ ...+ +ant)!

and //\i>\jd7" = Ka (with V(T)=V),
T 20

21 1 1
yr_ V[t 21
R 20 1 1 2 1 ’
1 11 2
e (Calculation of the elements of Ag;:
NS W ok GE it 61+ npt 52
_ Ad _ N, _ ON; O OXN; 8y ON; 9%z
TSN N WG G 5+ nGE e
N i O
—uafVac—i-,u8—27Vy—&-naEVz7
equivalently, we get
e i DN\ (ONie 0N ON
A iVj — A~ a~ — a~ — = .
VAV, (uaxV:c-i-,uayVy—i—nazVz)(axVx-l- 5 Vit BZVz)
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Therefore,

9% O, SO e O 8)\
AVAYN, = ut TEIVE 4+t TV +
(5% + 5 ) vavi+

o 0%, O O
(g 2 gz 2 ) VAVEH (i

S [VEP+

i O i ON Y\
B 92 ag)Vsz.

Using the relations (4), (5) and (6), we obtain:

8)\ 8)\
8 ¥ |515'3/\51S4|+
o, BA

p 5|8y 5155 A 51552 + 12k 2415155 A 515 2+

Jr

M(?{ aax; + A0y )(81S3A5184)(5’154/\S152)+

(M%& By |22 )(5155/\5‘154)(8152 A 5155)+

+( 3)\ 3)\ 8)\1‘%
a5 oz o7 oy

36VZAVAV; =

)(5154 A 515%) (5154 A 515%).

This enables us to compute the entries of the matrix A(, j). For example:

T

1 \
All = W [M’SQS{;/\SlS4|2—|—77’5152/\8153|2+(M—H7)(5253/\5154)(5152/\5153)

All rest entries can be found analogously
e Determination of N;

INE
Nl = / aVA\;dr,
T

we get R R R
ONi . ONi . O\
aV)\i—a-(afo%— 8§Vy+gv,z)—n,

/OéV)\i~/\jd7“—Ti//):de—TiV
T T 4

Now calculate the elements 7; in the preceding formulas. Let x;; = x; — x;,
Yij = ¥i — y;j and z;; = z; — z;. Then, it follows that:
1
= ey [041(24y32 + 23Y21 + Z2y43)
— (2432 + 23T24 + 22243) (10)

+ as(yars2 + ysros + y2$43)} .
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17 B}
T2 = 14 a1 (Y1241 — 231Ya1) + 02(T31241 — 231241) + @3(T31Ya1 — Y31241) |5

17 B}
T3 = W 041(2/41221 - Z41y21) + 042(2415621 - 9041221) + 043($41y21 - y41x21) )

17 B}
T4 = 6V a1(y21231 — 221Y31) + a2(221231 — T21231) + a3(T21y31 — Y21231) |-

As a result, the matrix (Ng ) takes the following form:

T T1 T1 T

( NT) — T2 T2 T2 T2
)

<

T3 T3 T3 T3
Ty T4 T4 T4

Note that terms (B]), and (DITJ) also can be determined effectivly.

3.4. Full Discretization: Time and Space Integration

In the full discretization of time and space for our problem (1), using the
system (9), and letting S = R + D, we obtain:

{ M/ (t) + Su(t) = B(t)
u(0) = ug

To derive a fully discrete formulation, we employ a time-implicit finite dif-
ference scheme, which ensures numerical stability even for relatively large time
steps. Applying this scheme to the above system, we obtain:

n+l _ 7
MU U

n+1 — B
o+ SU (®),

hence,
(M n AtS) U™t — MU + AtB.

4. Numerical simulations

Since the source term is not explicitly given, we will assume that the source
of pollution does not have a fixed position in the domain. Therefore, for the rest
of this document, we will use a synthetic solution (analytical solution) that will
allow us to generate the source term, the boundary conditions and the initial con-
dition, while taking care to respect the rules of regularity and the working space
established during the mathematical analysis of the problem. Using the method
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of separation of variables, we determine the eigenmodes of diffusion ([10]).The
simulations were implemented in MATLAB to perform finite element simulations,
implementing the spatial discretization of the domain and the temporal integra-
tion of the systeThe simulations were implemented in MATLAB to perform finite
element simulations, implementing the spatial discretization of the domain and
the temporal integration of the systemm.

In a particular case, the synthetic solution we will use, which satisfies the bound-
ary conditions, is given by:

3—H _ 3(ptngto)m3t
u(t,x,y,z) = sin (E> sin (ﬂ) sin (M)e i ,

oH oH oH
gu _m t(S(-H+3)) u=d if 2 =0
5, — 3 3 u=d-u, 2=0,
?)Z_O’ if z=H,

U(O, x,Y, Z) = Uug-

4.1. Error Analysis and Convergence Study

This section presents quantitative error evaluations and convergence analy-
sis. Tabulated results demonstrate how the numerical solution behaves with mesh
refinement and time step variation, verifying the expected order of accuracy. The
observed trends highlight the consistent performance of the proposed method
across varying discretization levels. These results underscore the robustness and
accuracy of the numerical approach for practical applications.

In each of the following cases, with parameters a1 = 2, ap =1, asg = 1, p = 3,

c=3,and n=— Ag{na%( z; + H, the error estimation table summarizes the differ-
i€k

ences between the approximate solution and the synthetic solution, measured in
the infinity norm, L? and H' norm.

If the following tables are analyzed separately and in detail, it can be observed
that:

e Table 1 reports the Ly, Lo, and H' error norms for a coarse mesh of
64 points, providing a baseline for assessing the accuracy of the method.
The results indicate that even at this coarse resolution, the numerical solu-
tion closely approximates the exact solution, demonstrating the method’s
reliability.
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e Table 2 shows the corresponding estimates for a mesh of 189 points, demon-
strating a noticeable reduction in errors with mesh refinement. This con-
firms that increasing the number of points improves the accuracy of the
numerical solution, highlighting the convergence of the method.

e Table 3 presents the error norms for a mesh of 315 points, further illustrat-
ing the convergence behavior of the method as the discretization becomes
finer. The results clearly show a continued decrease in all error norms,
confirming the method’s robustness and consistency with theoretical ex-
pectations.

e Table 4 summarizes the results for a highly refined mesh of 625 points,
confirming the accuracy of the method, stability, and convergence trends.
The error norms reach their minimal values at this level of refinement,
demonstrating the effectiveness and reliability of the numerical scheme for
practical computations.

[N [ 20 [ 70 | 10 [ 10 [ 220 | 270 | 320 | 3710 |
I’E__ [ 6.0196e-14 | 2.7993¢-14 | 2.4353¢-14 | 2.2071e-14 | 2.2244c-14 | 2.1796e-14 | 2.1492¢-14 | 2.1273¢-14
L¥E | 6.0706¢-06 | 4.0474c-06 | 3.7622¢-06 | 3.6488¢-06 | 3.5880c-06 | 3.5500e-06 | 3.5241e-06 | 3.5053¢-06
H'E_ | 3.0451e-05 | 2.0312¢-05 | 1.8883¢-05 | 1.8315¢-05 | 1.8010e-05 | 1.7820e-05 | 1.7690e-05 | 1.7595¢-05

Table 1: Table of error estimates for 64 points

[N \ 20 ] 70 ] 120 [ 170 ] 220 [ 270 [ 320 [ 370 ]
L’E [ 1.2692e-12 | 5.6330e-13 | 5.2141e-13 | 4.8683e-13 | 4.4280e-13 | 4.3359e-13 | 4.2730e-13 | 4.2276e-13
L¥E | 1.2053e-05 | 1.0168¢-05 | 8.4365e-06 | 7.9030e-06 | 7.5739e-06 | 7.5018¢-06 | 7.4525e-06 | 7.4166e-06
H'E [ 6.7869-05 | 4.4545e-05 | 4.1299e-05 | 3.9322e-05 | 3.8892e-05 | 3.8598e-05 | 3.8385e-05 | 3.8223e-05

Table 2: Table of error estimates for 189 points

[N \ 20 ] 70 ] 120 [ 170 ] 220 [ 270 [ 320 | 370 ]
L’E ] 9.4542¢-12 [ 5.4646e-12 | 4.9640c-12 | 4.7694e-12 | 4.6660e-12 | 4.6019¢-12 | 4.5583¢-12 | 4.5267c-12
L¥E | 3.3858e-05 | 2.7846Ge-05 | 2.6876e-05 | 2.6481e-05 | 2.6265e-05 | 2.6130e-05 | 2.6037e-05 | 2.5970e-05
H'E [ 1.4829¢-04 | 1.1044e-04 | 1.0490e-04 | 1.0268e-04 | 1.0148¢-04 | 1.0073e-04 | 1.0022e-04 | 9.9847¢-05

Table 3: Table of error estimates for 315 points

The error behavior is analyzed in the above tables from two perspectives:
varying the time step and varying the number of points:

e When these tables are read horizontally, i.e., by fixing the number of points
and varying the time step, it can be observed that as the time step increases,
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N

\ 20 \ 70 [ 120 [ 10 [ 220 | 20 [ 320 [ 3700 ]

L’E

2.0912e-10 | 1.6509 e-10 | 1.5853e-10 | 1.5589e-10 | 1.5446e-10 | 1.5357e-10 | 1.5295e-10 | 1.5251e-10

L>*E

1.0843e-04 | 1.0292 e-04 | 1.0193e-04 | 1.0152e-04 | 1.0129e-04 | 1.0115e-04 | 1.0105e-04 | 1.0098e-04

H'E

5.9528e-04 | 5.2721 e-04 | 5.1635e-04 | 5.1192e-04 | 5.0951e-04 | 5.0800e-04 | 5.0696e-04 | 5.0620e-04

Table 4: Table of error estimates for 625 points

the errors decrease progressively. The values remain very small, whether in
the L? norm, the L* norm, or the H! norm, indicating the high accuracy
of the method across different time steps.

Conversely, when the tables are read vertically, i.e., by fixing the time step
and increasing the number of points, we notice a slight increase in the
L? errors. This is due to the larger number of points, which introduces
additional computational approximations when evaluating the solution at
each point. However, this increase becomes negligible for meshes with 189
points or more. A similar behavior is observed for the L™ and H! error
norms.

Additionally, comparing the horizontal and vertical trends highlights the
method’s stability: while increasing the time step reduces errors and the
method maintains consistent convergence and accuracy.
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