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Free Convection Flow from a Dissipative Vertical Cone:
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Abstract. The group transformation in this study is created to simulate the laminar free con-
vective incompressible flow through a vertical cone with viscous dissipation and a non-uniform
surface flux (qw(x) = axm) that varies as a distance power function. Where m represents the
variable surface heat flux power law exponent, and a represents a constant. The governing par-
tial differential equations are transformed into ordinary differential equations using group theory
and solved numerically with a Runge–Kutta shooting technique. The analysis focuses on the
roles of viscous dissipation, Prandtl number, and the non-uniform surface heating parameter.
The results reveal that viscous dissipation enhances both velocity and temperature profiles by
increasing buoyancy forces. Variations in the surface heating parameter further redistribute the
flow and temperature gradients. The findings demonstrate the effectiveness of the group method
in reducing complex transport problems and provide insights relevant to cone-shaped engineering
systems such as heat exchangers and chemical reactors.
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1. Introduction

In fluid mechanics, the free convection process is vital in our environment. Due to
excessive acceleration or operation at high rotational speeds, significant heat losses in free
convection have been reported in a variety of equipment. Thermal dissipation effects are
stronger in weak gravitational fields with huge process scales, i.e., velocities are higher in
many applications of industry, such as electronic cooling and drying. Moran and Gaggiali
[1-2] investigated the one-parameter group transformation with a similarity approach. A
methodological approach is showcased to decrease the number of independent variables
in systems that typically include a collection of PDE (partial differential equations) as
well as auxiliary conditions. These processes are often referred to as similarity analyses in
engineering. A major simplification of group theory methods was established by Moran
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and Gaggioli. Kassem [3] discussed the free convective flow across a continuously moving
vertical plate exposed to a constant flux of heat at different velocities. A vertical cone
with a variable surface temperature that changes with the distance from the tip along
the flow of the cone was explained by Herring and Grosh [4].

Numerical solutions of the efficient boundary layer equation with a Prandtl value of
0.7 were found for both isothermal and linear surface temperatures. A vertical perme-
able cone with a non-uniform heat flow was used to study surface convection by Paul
and Hossain [5]. Heat transfer from a vertical circular cone submerged in a thermally
stratified medium having uniform surface temperature and heat flux was examined by
Hossain et al. [6] with non-similarity solutions to the laminar natural convection flow.
Free convection from a vertically rotating cone having constant heat flow along the wall
has been addressed by Kumari and Pop [7]. To examine the viscous dissipation impact
in steady-state free convection flow through a non-isothermal vertical cone, Kannan et
al. [8] employed a group approach. In the situation of constant heat flow as well as mass
flux, Hassanien et al. [9] represented mixed convection along a wedge surrounded by a
fluid saturated with a porous material by using the impact of variable viscosity along
with thermal conductivity. Kameswaran et al. [10] observed the mass transport and
heat convection in a chemically reactive and dissipative magneto-nano fluid flow with
soret diffusion effects. The phenomena investigated by Vajravelu and Hadjinicolaou [11]
examine the transfer of heat characteristics in a linearly expanding continuous surface
with variable wall temperature in the existence of viscous dissipation. To represent both
the wall skin friction as well as wall temperature distributions, Lin [12] derived the sim-
ilarity solution for laminar free convection of the right circular cone under constant heat
flow circumstances for Pr = 0.72, 1, 2, 4, 6, 8, 10, 100. Free convection over a vertical
frustum of a cone with uniform heat flux was studied by Na and Chiou [13].

The governing differential equations were solved by combining the finite difference
approach with the quasi-linearization technique, and provided a broad variety of trans-
verse curvature parameter values for Prandtl numbers from 0.1 to 100. A theoretical
analysis of suction or injection interactions from a vertical cone with constant surface
heat flux is solved by Pop and Watanabe [14] through the iterative difference-differential
technique. When the Prandtl number is 0.72, the numerical calculations are observed
for various suction/injection parameter values. Rama Subba Reddy et al. [15] imple-
mented a numerical solution for laminar-free convection from a vertical cone frustum
in power-law fluid flow with constant heat flux. Watanabe [16] concentrated his the-
oretical investigation on the effects of injection or suction over a vertical cone while
maintaining the constant wall temperature. Schlichting [17] delves more into the topic
of the boundary layer theory. In order to investigate mass as well as heat transfer in a
porous medium, Queeny and Singh [18] looked at free convection over a vertical surface.
A constant two-dimensional laminar incompressible flow around a sphere with viscous
dissipation and heat production has been analysed by Raihanul Haque et al. [19]. It is
assumed that the relationship between temperature and thermal conductivity is linear.

The main PDEs are transformed into locally non-similar partial differential forms
by utilizing suitable transformations. The Keller box method and the implicit finite
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difference methodology have been utilized to numerically solve the modified boundary
layer equations. Visual representations of numerical findings for the rate of heat transfer
along with important physical parameters are provided. Shekar Saranya et al. [20]
conducted an analysis on the flow as well as the transfer of heat of a hybrid ferrofluid
experiencing free convection from a heated spinning vertical cone by utilizing the IPS
(Iterative Power Series) technique. Palani and Kim [21] investigated the characteristics
of natural convection heat transfer under varying surface heat flux while also analyzing
the effects of thermal radiation as well as a magnetic field. Bapuji Pullepu and Immanuel
[22] studied the unsteady natural convective flow from a vertical cone by examining the
various impacts of an isothermal temperature and non-uniform concentration. Eldabe
et al. [23] utilized the finite difference method to derive the numerical solution for the
flow of gyrotactic microorganisms in a non-Darcian micropolar fluid containing different
nanoparticles.

This current study simplifies the governing boundary conditions and PDE into an
ODE with suitable boundary conditions. The group method approach has not gained
much attention in the literature concerning the vertical cone surface. Free convective
flow from a vertical cone with viscous dissipation and the non-uniform heat flux surface
condition has been analysed using the differential equations generated by the group
method technique. The dimensionless boundary layer equation is solved using the Runge-
Kutta approach. The present findings are compared to those of Watanabe and Pop [14],
Hossain and Paul [5], and others to ensure the correctness of the numerical outcomes,
and they are found to be highly consistent.

2. Mathematical Analysis

The axis-symmetric free convective incompressible viscous flow over a vertical cone
with viscous dissipation under the non-uniform surface heat flux condition is examined
in this paper. The surface of the cone and the embedded fluid are considered to be at
rest at the same temperature T ′

∞. The coordinate system has been depicted in Fig 1.
x represents the wall surface along the cone and y indicates the distance perpendicular
to the cone wall. where r is the cone’s local radius and ϕ is the half angle. Thermal
buoyancy effect affects an upward flow T ′

w > T ′
∞ with a heat flux qw(x) = axm. The

fluid properties stay constant with the exception of fluctuations in density and buoyancy
force.

The governing equations of the boundary layer with Boussinesq approximation for
continuity, momentum, and energy are shown below

(ru)x + (rv)y = 0 (1)

uux + vuy = gβ(T ′ − T ′
∞) cosϕ+ vuyy′ (2)

uT ′
x + vT ′

y = αT ′
yy +

µ

ρCp
(uy)

2 (3)



120 Bapuji Pullepu, Thirupathy Maheshwaran, Shyam Sundar Santra, Dumitru Baleanu

Figure 1: Model of physical system

The basic as well as boundary conditions have been given as:

u(x, 0) = v(x, 0) = 0, T ′
y =

−qw(x)

k
y = 0

u(0, y) = v(0, y) = 0, T ′(0,∞) = T ′
∞ x = 0

u(x, y), v(x, y) → 0, T ′(x, y) → T ′
∞ y → ∞

(4)

Local skin friction τx and Local Nusselt numbers Nux have been provided by

τx = µ(uy)y=0, Nux =
x

T ′
w − T ′

∞
(−T ′

y)y=0 (5a)

Introducing the suitable non-dimensional quantities

X =
x

L
, Y =

y

L
(GrL)

1/5, R =
r

L
where r = x sinφ

U =
uL

ν
(GrL)

−2/5, V =
vL

ν
(GrL)

−1/5, T =
(T ′ − T ′

∞)(GrL)
1/5

qw(L)/k

GrL =
gβqw(L)L

4 cosϕ

ν2k
, Pr =

ν

α
, ϵ =

gβL

CP

(6)

Where ϵ is the viscous dissipation parameter and Pr is the Prandtl number. By using
equ (5), the non-dimensional form of equations (1) to (3) are as follows:

(RU)X + (RV )Y = 0 (7)

UUX + V UY = T + UY Y (8)

UTX + V TY =
1

Pr
TY Y + ϵ(UY )

2 (9)
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The non-dimensional boundary conditions:

U(X, 0) = V (X, 0) = 0, TY = −Xm, at Y = 0

U(0, Y ) = V (0, Y ) = 0, T (0, Y ) = 0, at X = 0

U(X,Y ), V (X,Y ) → 0, T (X,Y ) → 0 as Y → ∞
(10)

From equation (5a), the local dimensionless skin friction τx and Nusselt numbers Nux
becomes

τx = Gr
3/5
L (UY )Y=0, Nux =

Gr
1/5
L

TY=0
Xm+1 (11a)

Similarity variables are as follows

L = XRQ(X,Y ), T = T (X,Y ) (12a)

We explain the work of the flow by reducing the number of conditions from 3 to 2

U =
1

R
ζY , and V =

1

R
ζX (13a)

Condition (6) is met by a stream function, while (7) and (8) are transformed into corre-
sponding conditions.

ζY

(
1

R
ζY

)
− 1

R
ζXζY Y = RT + ζY Y Y (14)

1

R
(ζY TX − ζXTY )−

1

Pr
TY Y + ϵ

1

R2
(ζY Y )

2 (15)

Boundary condition (9) communicated as:

lim
Y→0

ζY = 0, lim
Y→0

ζX = 0, lim
Y→0

TY = −Xm

lim
Y→∞

ζY = 0, lim
Y→∞

T = 0
(16)

3. Problem Formulation in Groups

The solution technique involves utilizing a 1-parameter group transformation on the
PDE (10) to (11). Two independent variables are decreased by one in this transfor-
mation, causing differential equations (10) to (11) to become an ODE with only one
independent variable, known as the similarity variable.
G : P̄ = Cp(a)P + kp(a).

4. The group’s systematic formulation

Class of one-parameters ‘a’ with group G initiated

G =


CX(a)X + kX(a) y = CY (a)Y + kY (a)

ζ̄ = CX(a)ζ + kX(a) r = CR(a)R+ kR(a)

T̄ = CT (a)X + kT (a)

(17)
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5. Transformation

The differential equations are transformed by obtaining the derivatives transforma-
tion from G via chain rule operations

P̄i =
(
CP /Ci

)
Pi

P̄ii =
(
CP /CiCj

)
Pij

}
(18)

here Pi’s for ζ,R, T .
Equations (10) & (11) are transformed invariantly under (13) and (14).

ζ̄Y

(
1

r
ζ̄Y

)
x

− 1

r
ζ̄xζ̄yy − rT̄ − ζ̄yyy = H1(a)

[
XY

(
1

R
ζY

)
X

− 1

R
ζXζY Y −RT − ζY Y Y

]
(19)

1

r
[ζ̄y − T̄x − T̄y ζ̄x]−

1

Pr
T̄yy − ϵ

1

r2
(ζ̄yy)

2

= H2(a)

[
1

R
(ζY TX − ζXTY )−

1

Pr
TY Y − ϵ

(CX)2

(CRR)2
1

(CY )2CT
(ζY Y )

2

] (20)

where H1(a), H2(a) are functions (or) may be constants

(Cζ)2

CRCX(CY )2

[
1

R
(ζY ζXY − 1

R2
(ζY )

2Rx −
1

R
ζXζY Y

]
−RCRCTT − Cζ

(CY )3
ζY Y Y + I1(a)

= H1(a)

[
ζY

(
1

R
ζY

)
X

− 1

R
ζXζY Y −RT − ζY Y

]
(21)

CζCT

CRCXCY

1

R
(ζY TX − ζXTY )−

1

Pr

CT

(CY )2
TY Y − ϵ

(Cζ)2

(CR)2(CY )4
(ζY Y )

2 + I2(a)

= H2(a)

[
1

R
(ζY TX − ζXTY )−

1

Pr
TY Y − ϵ

(Cζ)2

(CRR)2
1

(CY )2CT
(ζY Y )

2

] (22)

where

I1(a) =
∞∑
1

(
−1

n

)(
kR

CRR

)n
(Cζ)2

CRCX(CY )2
1

R
(ζY ζXY − ζXζY Y )−

∞∑
1

(
−2

n

)(
kR

CRR

)n

× (Cζ)2

CRCX(CY )2
1

R2
(ζY )

2RX − CRkRR− kRCTT − kRkT (23)

I2(a) =

∞∑
1

(
−1

n

)(
kR

CRR

)n
CζCT

CRCXCY

1

R
(ζY TX − ζXTY )

− ϵ

(CRR)2

∞∑
1

(
−2

n

)(
kR

CRR

)n

× (Cζ)2

(CY )4
(ζY Y )

2

(24)
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Invariance of equations (17) and (18)
⇒ I1(a) = I2(a) = 0
The above equations are satisfied by substitution.

kR = kT = kY = 0 (25)

(Cζ)2

CRCX(CY )2
=

Cζ

(CY )3
=

Cζ

CY
= 0 (26)

CζCT

CRCXCY
= kT = kY = 0 (27)

These yields

CX = (CY )2, CR =
1

(CY )2
, Cζ = CY (28)

Limit equations (19) & (20) are also invariant.

kR = kT = 0, CT = 1 (29)

Finally, a one boundary exhaustive G that varies invariantly, conditions (17) & (18),
and the most extreme conditions (19) & (20).
We get G from the above-mentioned conditions

G =



x = (Cy)2X + kX

y = CY Y

r = R
(Cy)2

ζ̄ = Cyζ + kζ

T̄ = T

(30)

6. Group transformation of the boundary layer flow equations

To solve this problem, we will use group techniques to transform it into an ODE
with 1-independent variable. Therefore, we must continue our investigation in order to
attain an absolute invariants complete collection.
If µ = µ(X,Y ) independent variables X and Y absolute invariants are present, then

Fj(X,Y, φ,R, T ) = Qj(µ(X,Y )), j = 1, 2, 3 (31)

In group theory, A function Fj(X,Y, φ,R, T ) is an absolute invariant of a one-parameter
group if it satisfies the following first-order linear differential equation

5∑
i=1

(AiPi +Bi)
∂F

∂Pi
= 0, Pi = X,Y, ζ,R, T where Ai =

∂Cpi

∂a
(a0), Bi =

∂kpi

∂a
(a0) (32)
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Here, a0 denotes the value thathas been produceby the group’s identity element.
Since kR = kT = kY = 0
From equation (23) and utilizing (22), we attain

B2 =
∂kY

∂a (a0) = 0, B4 =
∂kR

∂a (a0) = 0, B5 =
∂kT

∂a (a0) = 0

B3 =
∂kζ

∂a (a0) = 0, (i.e.) B2 = B3 = B4 = B5 = 0
By satisfying the first-order linear PDE, µ(X,Y ) is an invariant by equation (22)

(A1X +B1)
∂µ

∂X
+A2Y

∂µ

∂Y
= 0 (33)

From the above equation, we get
∂µ

∂X
= 0 (34)

Therefore eqn (30)

⇒ µ = Y (35)

Likewise, not altering the analysis of ζ,R, T dependent variables

ζ(X,Y ) = Γ1(X)Q(µ), R(X,Y ) = Γ2(X)E(µ), T (X,Y ) = T (µ) (36)

Here, functions Γ1(X),Γ2(X), Q(µ) & E(µ) have been calculated.
Since R(X,Y ) is independent of Y .

R(X,Y ) = R0Γ2(X) (37)

7. The Formation of ODE

The determined form of independent as well as dependent absolute invariants is used
to derive ODE as the general analysis progresses. The µ = µ(X,Y ) absolute invariant
takes the form provided in condition (31) Substitute equation (32) into equation (17)
and after dividing it by Γ1(X), we obtain

⇒ 1

R
ζY ζXY − 1

R2
(ζY )

2RX − 1

R
ζXζY Y −RT − ζY Y Y = 0 (38)

Q′′′ +
1

R0Γ2
QQ′′∂Γ1

∂X
−
(

1

R0Γ2

∂Γ1

∂X
− Γ1

R0Γ2
2

∂Γ2

∂X

)
Q′2 +

R0Γ2Γ3

Γ1
T = 0 (39)

Also, by substituting conditions (26) to (28) in the condition (13) we obtain

1
R(ζY TX − ζXTY )− 1

PrTY Y + ϵ 1
R2 (ζY Y )

2 = 0 (40)

1
R0Γ2

∂Γ1
∂X Q(µ)T ′ + 1

PrT
′′ − ϵ

Γ2
1

R2
0Γ

2
2
(Q′′(µ)2) = 0

C1 =
1

R0Γ2

∂Γ1

∂X
,C2 =

Γ1

R0Γ2
2

∂Γ2

∂X
,C3 =

R0Γ2Γ3

Γ1
are the random coefficients (41)
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By using the above documentation of condition (36), conditions (34) & (35) are reduced
to

Q′′′ + C1QQ′′ − (C1 − C2)Q
′2 + C3T = 0 (42)

C1QT ′ +
1

Pr
T ′′ − ϵ

Q′′2

C2
3

= 0 (43)

Corresponding boundary conditions are

Q′(0) = 0, T ′(0) = −Xm, Q′(∞) = T (∞) = 0 (44)

Case (i) put C1 =
3
4 , C2 =

1
4 & C3 = 1 in eqns (37) & (38) we attain

Q′′′ +
3

4
QQ′′ − 1

2
Q′2 + T = 0 (45)

3

4
QT ′ +

1

Pr
T ′′ − ϵQ′′2 = 0 (or) T ′′ +

3

4
PrQT ′ − PrϵQ′′2 = 0 (46)

Case (ii) put C1 =
7
4 , C2 =

5
4 & C3 = 1 in eqns (37) & (38) we attain

Q′′′ +
7

4
QQ′′ − 1

2
Q′2 + T = 0 (47)

7

4
QT ′ +

1

Pr
T ′′ − ϵQ′′2 = 0 (or) T ′′ +

7

4
PrQT ′ − PrϵQ′′2 = 0 (48)

With boundary conditions:

Q′(0) = 0, T ′(0) = −Xm, Q′(∞) = T (∞) = 0 (49)

Utilizing equations (9b) & (9c) into equation (9a), the dimensionless τx andNux becomes

τx = XQ′′(0)Gr
3/5
l , Nux =

Xm+1

T (0)
Gr

1/5
l (50)
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Figure 2: Flow chart of the shooting method

8. Results and Discussion

The fourth-order Runge-Kutta approach is used to solve equations (40) to (43) by
using the boundary conditions (44) numerically. The current results were compared
with available data in the literature to verify our numerical results. Table 1 shows the
numerical values of temperature (T) and for various Prandtl values, which have been
compared with the available results of Palani and Kim [21] and are found to be in
excellent agreement. It is also important to note that the current findings are consistent
with those of Pop and Watanabe [14].
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Table 1: Skin friction and temperature values are compared with the results of Palani
and Kim [21] with the absence of a magnetic field and m=0

Local skin friction Temperature

Palani and Kim
[21] results

Present results Palani and Kim
[21] results

Present results

Pr τX τX T T

0.72
1.2240
1.2180∗ 1.2205

1.7996
1.7870∗ 1.7883

1 1.0797 1.0789 1.6325 1.6302
2 0.8193 0.8172 1.3532 1.3576
4 0.6473 0.6465 1.1480 1.1401
6 0.5462 0.5471 1.0501 1.0502
8 0.4895 0.4798 0.9806 0.9863
10 0.4494 0.4489 0.9290 0.9260
100 0.1839 0.1812 0.5571 0.5505

∗ Shows the values found in Pop and Watanabe [14] study when the suction injection is 0.
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Figure 3: Velocity profile for various ϵ values.
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Figure 4: Temperature profile for various ϵ values.
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Figure 5: Velocity profile for various Pr values.
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Figure 6: Temperature profile for various Pr values.
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Figure 7: Velocity profile for various m values.
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Figure 8: Temperature profile for various m values.
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9. Conclusions

This work applied the group method of transformations in combination with the
Runge-Kutta shooting scheme to examine the non-uniform surface heat flux impact
on the continuous laminar free convection of a dissipative fluid across a vertical cone
geometry. The approach successfully reduced the governing PDEs to a tractable system
of ODEs and offered accurate numerical solutions. The results highlight that viscous
dissipation acts as an internal heat source, thereby enhancing buoyancy and increasing
velocity and temperature. The surface heating parameter modifies the distribution of
buoyancy along the cone, producing notable changes in flow gradients.
The following findings were reached:

• The velocity and temperature intensities increase with greater viscous dissipation
parameter, and decrease when the parameters Pr and m are greater.

• Arise in m thickens the thermal and momentum boundary layer.

• The Nux rises for accelerating values of Pr and m, whereas lowers for the values
of ϵ.

The novelty of this study lies in demonstrating the applicability of the group method to
a cone geometry with dissipation effects under non-uniform heat flux. Future extensions
of this work may include the effects of radiation, porous media, or hybrid nanofluids,
which would broaden the engineering relevance to energy systems, electronic cooling,
and advanced manufacturing processes.
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