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Shape Derivative of the Fractional p-Laplacian Op-
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Abstract. This article investigates shape optimization problems governed by Fractional
p-Laplacian operators of the form (−∆)sp where 0 < s < 1 and p ≥ 2. We begin by
establishing the existence of a weak solution to the associated variational problem, which
will guarantee the calculation of the shape derivative. Then we derive the shape derivative
of the functional using the minmax method, which provides a robust framework for
nonlocal sensitivity analysis.
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1. Introduction and results

This work focuses on the in-depth mathematical study of shape optimization
a field that lies at the crossroads of the calculus of variations, geometric analysis,
and partial differential equations. Shape optimization concerns the study of op-
timal configurations of domains with respect to prescribed cost functionals, often
constrained by PDEs. The framework relies on smooth perturbations of admis-
sible domains to develop shape calculus tools, enabling the derivation of first-
and second-order shape derivatives. The mathematical foundation of shape opti-
mization draws heavily on boundary variation techniques and the theory of free
boundary problems. It has broad applications in fluid dynamics, structural me-
chanics, inverse problems, and control theory. In particular, the shape derivative
provides a sensitivity measure of the functional with respect to domain deforma-
tions, which is essential for gradient-based optimization algorithms. The present
study contributes to this theory by extending shape calculus to nonlocal and
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nonlinear operators, with a focus on the fractional p-Laplacian. This work is mo-
tivated by our previous investigations into the fractional p-Laplacian, with further
context available in [22]. In mathematical analysis, the fractional Laplacian is a
nonlocal operator that generalizes the classical Laplacian by extending the notion
of spatial derivatives to fractional powers. It serves as a fundamental tool in the
formulation of fractional partial differential equations (PDEs), which arise in var-
ious physical and engineering contexts. In this paper, we focus on the fractional
p-Laplacian, a nonlinear and nonlocal generalization of the classical Laplacian
that incorporates both fractional-order differentiation and p-growth conditions.
This operator is particularly relevant for modeling complex phenomena such as
anomalous diffusion, turbulence, and nonlocal transport processes. For a com-
prehensive overview of its applications and theoretical foundations, we refer the
reader to [2] and the references therein. Multiple definitions of the fractional
Laplacian exist, including formulations based on Fourier transform techniques
[17], singular integral representations [33], and semigroup theory [26]. These
distinct approaches reflect the operator’s versatility and its applicability across
various domains. Notable physical systems where the fractional Laplacian plays
a central role include quasi-geostrophic flows, water wave dynamics, molecular
transport, and plasma diffusion. Given the diversity of definitions and modeling
frameworks, a range of analytical and numerical methods has been developed
to address problems involving the fractional Laplacian. A seminal contribution
by Caffarelli and Silvestre [13] introduced the extension method, which recasts
the fractional Laplacian as a Dirichlet-to-Neumann map for a local PDE in an
extended space. This approach has since become a cornerstone in the analysis
of nonlocal equations. Further developments by Fall et al. [23] and others have
advanced the regularity theory and optimization techniques for both local and
nonlocal operators. The fractional p-Laplacian has also been extensively studied
in the context of anomalous diffusion. In particular, the works of Metzler and
Klafter [24, 25] provide a probabilistic and physical interpretation of fractional
dynamics, deriving fractional PDEs from continuous-time random walk models
and Levy flight processes. These studies underscore the relevance of fractional
operators in capturing nonlocal and nonlinear behaviors in complex systems. Re-
cent developments in the numerical treatment of nonlocal operators have yielded
robust schemes for approximating the fractional Laplacian, particularly those
based on singular integral representations, as detailed in [2, 5]. These approaches
provide a rigorous discretization framework for operators defined via hypersingu-
lar kernels, enabling accurate resolution of boundary value problems in fractional
Sobolev spaces. From an analytical standpoint, Caffarelli et al. [13, 16] estab-
lished foundational results concerning the spectral and extension-based character-
izations of fractional powers of the Laplacian and general integro-differential oper-
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ators. Their work elucidates the interplay between nonlocality and regularity, and
demonstrates how extension techniques can recover local PDE formulations from
nonlocal models, thereby facilitating the derivation of regularity estimates and
maximum principles. In the context of boundary regularity, Ros-Oton, Xavier,
and Serra [6, 7, 28, 30, 31] introduced refined analytical tools to investigate the
fine properties of solutions near the boundary of the domain. Their contributions
include sharp Hölder continuity results and boundary Harnack inequalities for
solutions to fractional elliptic equations, which are instrumental in understand-
ing the behavior of nonlocal operators in irregular geometries. Building upon
these analytical foundations, Fall et al. [23] extended the regularity theory to
encompass nonlocal Schrodinger-type equations, establishing existence, unique-
ness, and regularity results for weak solutions in fractional Sobolev spaces. Their
framework accommodates singular potentials and nontrivial boundary conditions,
thereby broadening the applicability of nonlocal models in quantum mechanics
and related fields. Parallel to these developments, shape optimization problems
governed by fractional operators have emerged as a fertile area of research. Dal-
ibard et al. [14, 15] investigated the existence of optimal domains for energy
functionals under the constraint s = 1

2 , employing variational techniques and ge-
ometric measure theory. Subsequently, Fall et al. [21] generalized the analysis to
the regime 0 < s < 1, utilizing nonlocal shape calculus and variational methods
to derive first-order shape derivatives and establish optimality conditions in the
presence of fractional p-Laplacian constraints. Previous investigations, notably
in [22], have addressed shape derivative analysis of associated functionals via per-
turbations induced by vector fields. This foundational approach motivates our
interest in exploring the concept of topological derivatives, now framed within the
context of recent developments presented in [8, 9, 27]. In this work, we pursue the
computation of the topological derivative through the lens of the minmax varia-
tional principle. For a comprehensive exposition of this methodology, the reader
is referred to [10]. Regarding applied contexts, [22] provides a detailed derivation
of the topological derivative for a functional arising in linear thermoplasticity,
while [27] presents a practical application involving Helmholtz-type problems.
The principal objective of this article is to characterize the shape derivative of
the functional

F (Ωϵ) = F (Ωϵ, uϵ).

A detailed analysis of the existing literature, particularly the works cited above,
reveals a significant lack of comprehensive studies addressing shape optimization
problems governed by nonlocal operators, such as the fractional Laplacian. This
observation constitutes the principal motivation for the present investigation.
Fractional nonlocal operators, notably the fractional p-Laplacian ∆s

p, naturally
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emerge in a wide range of applied mathematical models, including those in con-
tinuum mechanics, phase transition dynamics, population dispersal, and evolu-
tionary game theory. In this study, we rigorously examine the following shape
optimization problem:

min
Ω∈O

F (Ω). (1)

Let F denote a prescribed cost functional, O the set of admissible domains, and
Ω an open and bounded region within RN , with N ≥ 2, satisfying the following
conditions

F (Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy, (2)

with uΩ the solution to the following p-Laplacian operator
(−∆)spuΩ = f in Ω,

uΩ = 0 on RN \ Ω,

p ≥ 2.

(3)

The decision to impose the lower bound p ≥ 2 (rather than merely p > 1) is
motivated by several key technical and analytical considerations:

• Regularity of the functional space: When p ≥ 2, the fractional
Sobolev space W s,p(RN ) exhibits stronger convexity and regularity proper-
ties, which significantly facilitate variational analysis.

• Differentiability of the energy functional: In this regime, the associ-
ated energy functional is of class C1 on W s,p(RN ), a crucial requirement for
applying classical variational tools such as the mountain pass theorem. This
regularity is also essential in our context for computing shape derivatives.

• Control of singularities: For 1 < p < 2, the nonlinear term

|u(x)− u(y)|p−2(u(x)− u(y))

becomes singular as u(x) → u(y), which introduces significant analytical
challenges, especially in the nonlocal setting.

• Compactness and convexity properties: The space W s,p(RN ) enjoys
better compactness and convexity properties when p ≥ 2, making it easier
to construct minimizing sequences.



70 Malick Fall*, Bakary Kourouma, Ibrahima Faye, Alassane Sy

• Physical relevance: Many models arising in mechanics, physics, and biol-
ogy naturally involve powers p ≥ 2, corresponding to more regular diffusive
behaviors that are better captured within this framework.

This work constitutes a continuation and broadening of the results presented in
[14, 21, 22], now applied to the fractional p-Laplacian operator for parameters
0 < s < 1 and p ≥ 2. In contrast to previous methodologies, we adopt a varia-
tional framework oriented toward shape differentiation via the minmax principle.
Initially, we establish the existence of weak solutions by leveraging the founda-
tional results of M. Fall et al. [21]. This analytical foundation enables a rigorous
derivation of the shape derivative of the associated functional within the frac-
tional Sobolev spaces, using the minmax approach as a central tool.
Remark When the second term in the first equation of (1.3) is absent, the
framework developed in [21, 22] can be extended to build on the shape derivative
approach introduced by Dalibard and Gérard-Varet [14]. This extension lever-
ages the vector field method, which works well as long as the governing equation
maintains a relatively simple structure. However, once the nonlinear term is
introduced, the analysis becomes significantly more complex. Challenges such
as nonlocal interactions, nonlinear couplings, and the breakdown of symmetry
emerge, making the classical vector field method inadequate. As a result, deriv-
ing the shape derivative in the style of Dalibard and Gérard-Varet is no longer
feasible, and alternative strategies like minmax techniques or variational pertur-
bation methods must be employed to fully capture the intricacies of the problem.
While the classical Hadamard method offers a formal route for computing shape
and topological derivatives, it often proves difficult to implement numerically.
This is especially true when dealing with singular integrals or boundary vari-
ations, which are notoriously hard to approximate accurately particularly in
settings involving complex geometries or nonlocal operators like the fractional
Laplacian.
In contrast, the minmax (or variational) approach provides a more robust and
practical alternative for numerical simulations. By recasting the derivative com-
putation as a saddle-point problem, it enables the derivation of shape and topo-
logical derivatives in a weak (distributional) sense. This formulation lends itself
to more stable numerical schemes that are less sensitive to geometric irregulari-
ties, making it especially effective for problems governed by nonlocal or fractional
operators.
The main results of this work are as follows: We begin with the existence result
for a weak solution to the system described in equation (3).

Theorem 1. Let Ω ⊂ RN be an open domain of class C2, with N > 1, and let
s ∈ (0, 1), p ∈ [2,+∞). Then, there exists a unique weak solution u ∈W s,p(Ω) to
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the problem described in equation (3). Furthermore, this solution is the minimizer
of the variational problem

inf
u∈W s,p(Ω)

F (u, u),

where the functional F is defined by

F (u, v) = ⟨(−∆)spu, v⟩W s,p(Ω) −
∫
Ω
f(x)v(x)dx.

The second main result concerns the shape derivative of the functional (2),
which is stated as follows:

Theorem 2. Let Ω be the solution to the optimization problem min{F (Ω), Ω ∈
O}. If the function R(ϵ) admits a finite limit R(u, p), then the shape derivative
of F (Ω) in the direction of a smooth vector field V ∈ C1(RN ;RN ) is given by:

DF (Ω, V ) =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))K ′
0(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(p(x)− p(y))K ′
0(x, y) dxdy

−
∫
Ω
(∇f · V (0))p dx−

∫
Ω
fp divV (0) dx+R(u, p)

where p is the solution to the following adjoint equation and φ a test function in
W s,p(RN ):∫
RN

∫
RN

(p− 1)|u(x)− u(y)|p−2(φ′(x)− φ′(y))K0(x, y) dxdy

= − (p− 1)

C(N, s)

∫
RN

∫
RN

|u(x)− u(y)|p−2(φ′(x)− φ′(y))(p(x)− p(y))K0(x, y) dxdy.

This paper is structured as follows: Section 2 presents the functional frame-
work and proves the existence of a weak solution to the fractional p-Laplacian
problem. Section 3 introduces the minmax method and develops the theorical
tools needed to compute the shape derivative and provides the full derivation of
the shape derivative using domain perturbation and adjoint equations. Finally,
section 4 concludes the paper and outlines possible extensions.

2. Existence of a weak solution

2.1. On the fractional operators.

We begin by recalling several foundational definitions and results pertinent
to shape optimization theory. In this work, we restrict our attention to problems
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governed by the Laplacian and the nonlinear p-Laplacian operators, with p ≥ 2.
These operators serve as prototypical examples in the study of PDE-constrained
optimization, where the objective functional depends on the solution of an elliptic
boundary value problem defined over a variable domain. The shape optimization
framework typically involves analyzing the sensitivity of a cost functional with
respect to smooth perturbations of the domain. This requires the development
of shape calculus tools, including the notions of shape derivative and topologi-
cal derivative, which are central to deriving necessary optimality conditions and
implementing gradient-based optimization algorithms. We now introduce the rel-
evant definitions and mathematical structures that will be used throughout the
paper.

Definition 1. Let p ∈ [2,+∞) and s ∈ (0, 1). The fractional p-Laplacian opera-
tor is defined for a function u at a point x ∈ RN by:

(−∆)spu(x) = 2 lim
ϵ−→0

∫
RN\Bϵ(x)

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dy

which can also be expressed using the principal value P.V. as:

(−∆)spu(x) = 2P.V.

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dy.

Here, P.V. denotes the principal value of the integral, ensuring convergence near
the singularity at x = y.

Remark 1. For p ̸= 2, the fractional p-Laplacian operator (−∆)sp is inherently

nonlinear. Its evaluation at a point x ∈ Ω ⊂ RN depends not only on the function
u, but also on the domain Ω and the ambient dimension N , i.e.,

(−∆)spu(x) = (−∆)spu(x,Ω, N).

This operator generalizes the classical fractional Laplacian, which corresponds to
the linear case p = 2. Specifically, for p = 2, the fractional Laplacian (−∆)s is
defined via the singular integral representation:

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where C(N, s) is a normalization constant depending on the dimension N and
the fractional order s ∈ (0, 1).
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Definition 2. Let 0 < s < 1, p ∈ [2,+∞), and assume N ≥ sp. Consider
a bounded open set Ω ⊂ RN with a Lipschitz continuous boundary. For any
measurable function u, the Gagliardo seminorm is given by:

[u]s,p =

(∫
Ω

∫
Ω

| u(x)− u(y) |p

| x− y |N+ps
dxdy

) 1
p

1. The fractional Sobolev space W s,p(Ω) is defined as:

W s,p(Ω) = {u ∈ Lp(Ω) | [u]s,p < +∞} ,

and is equipped with the norm:

∥u∥W s,p(Ω) =

(∫
Ω
|u(x)|p dx+ [u]ps,p

) 1
p

.

2. The subspace W s,p
0 (Ω) is defined by:

W s,p
0 (Ω) =

{
u ∈W s,p(RN )

∣∣ u = 0 almost everywhere in RN \ Ω
}
,

and is normed equivalently by setting ∥u∥s,p = [u]s,p.

Theorem 3. Let p ∈ [2,+∞) and s ∈ (0, 1). Then the fractional p-Laplacian
operator

(−∆)sp :W
s,p
0 (Ω) −→ (W s,p

0 (Ω))
′

defined by
uΩ 7→ (−∆)spuΩ

is well-defined. Moreover, the following properties hold:
1. For all u, v ∈W s,p

0 (Ω), the duality pairing is given by:

⟨(−∆)spu, v⟩ =
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy.

2. For all u, v ∈W s,p
0 (Ω), the following inequality holds:

⟨(−∆)spu, v⟩ ≤ [u]p−1
s,p [v]s,p,

where [·]s,p denotes the Gagliardo seminorm in W s,p(Ω).

Proof. 1. As u ∈W s,p
0 (Ω) the integral in the definition of (−∆)sp exists

(−∆)spu(x) =

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dy
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then, ∀u, v ∈W s,p
0 (Ω) we have by Fubini’s theorem, we get :

⟨(−∆)spu, v⟩ = 2

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
v(x)dydx.

In fact, the duality pairing of the fractional p-Laplacian with a test function v
can be expressed as:

⟨(−∆)spu, v⟩ =
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy,

which can be equivalently rewritten as:

=

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
v(x) dy dx+

∫
R2N

−|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
v(y) dy dx.

By exchanging the variables x and y in the second integral, we obtain:

⟨(−∆)spu, v⟩ =
∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
v(x) dy dx

+

∫
R2N

−|u(x)− u(y)|p−2(−1)(u(x)− u(y))

|x− y|N+ps
v(x) dy dx,

which simplifies to:

⟨(−∆)spu, v⟩ =
∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
v(x) dy dx

+

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
v(x) dy dx.

Thus, the two terms are identical and can be combined, yielding:

⟨(−∆)spu, v⟩ = 2

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
v(x)dxdy. (4)

2. By applying Hölder’s inequality to the duality pairing of the fractional
p-Laplacian, we obtain:

⟨(−∆)spu, v⟩ =
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy

≤
∫
RN

∫
RN

|u(x)− u(y)|p−1|v(x)− v(y)|

|x− y|(N+ps)
(

p−1
p

)
· |x− y|(N+ps)

(
1
p

) dx dy
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⟨(−∆)spu, v⟩ ≤
(∫

RN

∫
RN

| u(x)− u(y) |p

| x− y |(N+ps)
dxdy

) p−1
p

·
(∫

RN

∫
RN

| u(x)− v(y) |p

| x− y |(N+ps)
dxdy

) 1
p

≤ [u]p−1
s,p [v]s,p

Therefore, we arrive at the following expression:

⟨(−∆)spu, v⟩ ≤ [u]p−1
s,p [v]s,p.

This theorem will be useful in the following.

Theorem 4. . Let s ∈ (0, 1), p ∈ [2,+∞), and q ∈ [1, p]. Let Ω ⊂ RN be a
bounded open domain such that W s,p(Ω) is well-defined, and let T ⊂ Lp(Ω) be a
bounded subset. Assume that

sup
u∈T

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
< +∞.

Then T is relatively compact in Lq(Ω).

Proof. The proof follows from the compact embedding results for fractional
Sobolev spaces. For details, we refer the reader to [15].

2.2. Existence of solution for the nonlocal Dirichlet problem.

The class of problems considered in this section was previously studied by
Caffarelli and Silvestre [13] in the special case where the fractional order is
s = 1

2 . Their groundbreaking work introduced an extension technique that trans-
forms the fractional Laplacian into a local operator in a higher-dimensional space,
thereby simplifying the analysis of nonlocal equations. In [21, 22], we established
the shape derivative using the Hadamard method. In the present work, we aim to
extend these results to the full range 0 < s < 1, adopting a variational framework
tailored to the fractional p-Laplacian. The goal of this section is to establish an
extension result for the associated boundary value problem, which serves as a
crucial foundation for deriving shape and topological derivatives in the nonlocal
setting. 

(−∆)spuΩ = f in Ω

uΩ = 0 on RN \ Ω

p ≥ 2.

(5)
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To establish the existence result, we employ the Euler-Lagrange equation associ-
ated with (5), which allows us to reformulate the problem in terms of a functional
F (u). Lemma 1 establishes that the sequence (uk) is bounded in W s,p(Ω); in
particular, we have [u]s,p < +∞. This result plays a crucial role in the proof
of Theorem 1, as it ensures the necessary compactness and weak convergence
properties within the fractional Sobolev space.

Lemma 1. Let (uk)k≥1 ⊂ W s,p(Ω) be a minimizing sequence for the functional
F , satisfying

lim
k→+∞

F (uk, uk) = inf
v∈W s,p(Ω)

F (v, v) = m.

Then the sequence (uk)k≥1 is bounded in the space W s,p(Ω).

Proof. Assume that the sequence {uk} ⊂ W s,p(Ω) is minimizing for the
functional F (uk, uk), and let m denote its infimum. Then, there exists an index
k0 ∈ N such that for all k ≥ k0, the following inequality holds:

m ≤ F (uk, uk) ≤ m+
1

k
, ∀k ≥ 1.

The functional F is defined by:

F (u, v) =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy−

∫
Ω
f(x)v(x) dx.

From this, we obtain the estimate:

F (uk, uk) ≥ [uk]
p−1
s,p [uk]s,p −

p− 1

p
∥ f ∥

p
p−1

L2(Ω)
−1

p
∥ uk ∥p

L2(Ω)
.

Consequently, we deduce:

[uk]
p−1
s,p [uk]s,p ≤ F (uk, uk) +

p− 1

p
∥ f ∥

p
p−1

L2(Ω)
+
1

p
∥ uk ∥p

L2(Ω)
. (6)

Since the domain is bounded, we have Lp(Ω) ⊂ L2(Ω), which justifies the use of
L2 norms in certain estimates.
Assuming that f ∈ Lp(Ω), and given a sequence {uk} ⊂ Lp(Ω) satisfying the
energy bound

F (uk, uk) ≤ m+
1

k
,

for some constant m > 0 and all k ∈ N, we deduce that the right-hand side of in-
equality (6) remains uniformly bounded as k → ∞. Consequently, the left-hand
side of (6) must also be bounded, which implies that the Gagliardo seminorm



77

[uk]s,p is uniformly bounded by a constant depending only on f and m. This
boundedness plays a crucial role in establishing compactness and weak conver-
gence properties in the fractional Sobolev space W s,p(Ω).

We define the energy functional F :W s,p
0 (Ω) → R by:

F (u) :=

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy − ⟨f, u⟩,

with

⟨f, u⟩ =
∫
Ω
f(x)u(x)dx.

Theorem 5. The functional F is coercive, strictly convex, and weakly lower
semi-continuous on W s,p

0 (Ω).

Proof.

1. Coercivity: As ∥u∥W s,p → ∞, the energy term dominates and F (u) → ∞.
Let Ω ⊂ RN be a bounded open domain, with 0 < s < 1, p ≥ 2, and let
f ∈ (W s,p

0 (Ω))∗. We define the energy functional:

F (u) :=

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy − ⟨f, u⟩,

for all u ∈W s,p
0 (Ω).

We aim to prove that F is coercive, i.e.,

∥u∥W s,p(RN ) → ∞ ⇒ F (u) → ∞.

Recall that the norm in W s,p
0 (Ω) is given by:

∥u∥W s,p(RN ) :=

(∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

Let us denote this seminorm by [u]W s,p . Then:

F (u) = [u]pW s,p − ⟨f, u⟩.

Using Hölders inequality for the dual pairing:

|⟨f, u⟩| ≤ ∥f∥(W s,p
0 )∗ · ∥u∥W s,p .

Combining the above, we obtain:

F (u) ≥ ∥u∥pW s,p − ∥f∥(W s,p
0 )∗ · ∥u∥W s,p .
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Let ϵ := ∥u∥W s,p . Then:

F (u) ≥ ϵp − ∥f∥ · ϵ.

Since p > 1, the term ϵp dominates the linear term ∥f∥ · ϵ as ϵ → ∞.
Therefore:

lim
ϵ→∞

(ϵp − ∥f∥ · ϵ) = ∞.

Hence,
lim

∥u∥Ws,p→∞
F (u) = ∞.

The functional F is coercive on W s,p
0 (Ω), which is a key step in applying

the direct method in the calculus of variations to prove the existence of a
weak solution. Let u, v ∈W s,p

0 (Ω), with u ̸= v, and let λ ∈ (0, 1). Define:

w := λu+ (1− λ)v.

We examine the seminorm:

[w]pW s,p =

∫∫
RN×RN

|w(x)− w(y)|p

|x− y|N+ps
dx dy.

Note that:

w(x)− w(y) = λ(u(x)− u(y)) + (1− λ)(v(x)− v(y)).

Since the function ϕ(ϵ) = |ϵp| is strictly convex for p > 1, we have:

|λa+ (1− λ)b|p < λ|a|p + (1− λ)|b|p fora ̸= b.

Applying this pointwise to the integrand yields:

|w(x)− w(y)|p < λ|u(x)− u(y)|p + (1− λ)|v(x)− v(y)|p,

for a set of positive measure (since u ̸= v). Integrating both sides:

[w]pW s,p < λ[u]pW s,p + (1− λ)[v]pW s,p .

2. Linearity of the Dual Term
The dual pairing ⟨f, u⟩ is linear in u, so:

⟨f, w⟩ = λ⟨f, u⟩+ (1− λ)⟨f, v⟩.

Combining both results:

F (w) = [w]pW s,p − ⟨f, w⟩ < λF (u) + (1− λ)F (v),

whenever u ̸= v. Hence, F is strictly convex on W s,p
0 (Ω).

Let un ⇀ u weakly in W s,p
0 (Ω). We aim to show:

lim inf
n→∞

F (un) ≥ F (u).
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(a) The Gagliardo seminorm:

[u]pW s,p :=

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

is convex and weakly lower semi-continuous. Therefore:

lim inf
n→∞

[un]
p
W s,p ≥ [u]pW s,p .

(b) The linear term ⟨f, u⟩ is continuous with respect to weak convergence:

⟨f, un⟩ → ⟨f, u⟩.

(c) Combining both:

lim inf
n→∞

F (un) = lim inf
n→∞

(
[un]

p
W s,p − ⟨f, un⟩

)
≥ [u]pW s,p − ⟨f, u⟩ = F (u).

Thus, F is weakly lower semi-continuous on W s,p
0 (Ω).

Proof. of theorem 1
Let v ∈ W s,p

0 (Ω), multiplying the first equation of (5) by v ∈ W s,p
0 (Ω) and by

integrating on Ω we have :∫
Ω
(−∆)spu vdx =

∫
Ω
f(x)v(x)dx. (7)

By using definition of the scalar product in W s,p(Ω), we have :∫
R2N

(−∆)spu v =

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy.

hus, equation (7) can be rewritten as:∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy =

∫
Ω
f(x)v(x) dx.

In the subsequent analysis, we define the functional F by:

F (u, v) =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy−

∫
Ω
f(x)v(x) dx.

in others words,

F (u, v) = ⟨(−∆)spu, v⟩ −
∫
Ω
f(x)v(x)dx. (8)
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We aim to show that the functional F is bounded from below, i.e.,

F (u, u) > −∞,

for all admissible u ∈ W s,p(Ω). Assuming f ∈ Lp(Ω), and that F involves terms
of the form

F (u, u) = [u]ps,p −
∫
Ω
f(x)u(x) dx,

we apply Hölderss inequality to estimate the linear term:∣∣∣∣∫
Ω
f(x)u(x) dx

∣∣∣∣ ≤ ∥f∥Lp(Ω)∥u∥Lp′ (Ω),

where p′ = p
p−1 is the Hölder conjugate of p. Since W s,p(Ω) ↪→ Lp′(Ω) continu-

ously for suitable s and p, it follows that

∥u∥Lp′ (Ω) ≤ C∥u∥W s,p(Ω),

for some constant C > 0. Therefore, the functional F (u, u) is bounded from
below by

F (u, u) ≥ [u]ps,p − C∥f∥Lp(Ω)∥u∥W s,p(Ω),

which implies that F (u, u) > −∞ for all u ∈W s,p(Ω), completing the argument.

| F (u, v) |≤
(∫

R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy

) p−1
p

(∫
R2N

| (v(x)− v(y) |p

| x− y |N+ps
dxdy

) 1
p

+

∫
Ω
|f(x)v(x)|dx,

giving directly

| F (u, v) |≤ [u]p−1
s,p [v]s,p+ ∥ f ∥L2(Ω)∥ v ∥L2(Ω) .

Since u, v ∈W s,p
0 (Ω), we derive that the functional F (u, v) is bounded.

Since Ω ⊂ RN, Theorem (4) ensures that the Gagliardo seminorm [·]s,p is pre-
compact in Lp(Ω). Given that the sequence (uk)k≥1 is bounded in W s,p(Ω), by
the Banach-Alaoglu Theorem and the Rellich-Kondrachov compactness Theorem
adapted to fractional Sobolev spaces, there exists a subsequence (ukl)l≥1 and a
function u ∈W s,p(Ω) such that:
ukl ⇀ u weakly in W s,p(Ω), ukl → u strongly in Lp(Ω), ukl ⇀ u weakly in Lp(Ω),
as l → +∞.
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It follows that the limit function u inherits the regularity and integrability prop-
erties of the sequence. Moreover, due to the weak lower semicontinuity of the
Gagliardo seminorm and the convexity of the energy functional F , we obtain:

F (u, u) ≤ lim inf
l→∞

F (ukl , ukl),

which confirms that u is a minimizer (or candidate minimizer) of the functional
F in the admissible space W s,p(Ω).

F (ukl , ukl) =

∫
RN

∫
RN

| ukl(x)− ukl(y) |p−2 (ukl(x)− ukl(y))(ukl(x)− ukl(y))

| x− y |N+ps
dxdy

−
∫
Ω
f(x)ukl(x)dx ≤ m+ ϵ, ∀ϵ ≥ 0.

It follows from the above inequality, that:∫
R2N

| (ukl(x)− ukl(y)) |p

| x− y |N+ps
dxdy ≤

∫
Ω
f(x)ukl(x)dx+m+ ϵ, ∀ϵ ≥ 0.

Applying Fatou’s Lemma, we obtain the following inequality for the limiting
behavior of the energy functional:∫

R2N

lim inf
l−→+∞

| (ukl(x)− ukl(y)) |p

| x− y |N+ps
dxdy ≤ lim inf

l−→+∞

∫
Ω
fukldx+m+ ϵ, ∀ϵ ≥ 0.

∫
R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy ≤ lim inf

l−→+∞

∫
Ω
fukldx+m+ ϵ, ∀ϵ ≥ 0.

By the weak convergence ukl ⇀ u in Lp(Ω), and the fact that Lp(Ω) is reflexive
for p > 1, it follows that for any test function ϕ ∈ Lp′(Ω), where p′ = p

p−1 , we
have:

lim
l→∞

∫
Ω
ukl(x)ϕ(x) dx =

∫
Ω
u(x)ϕ(x) dx.

This confirms that u ∈ Lp(Ω) and that the sequence (ukl) converges weakly to u in
the dual pairing of Lp(Ω) and Lp′(Ω). Moreover, since the embeddingW s,p(Ω) ↪→
Lp(Ω) is compact under suitable conditions on Ω, the strong convergence ukl → u
in Lp(Ω) also holds. This dual convergence (weak in W s,p, strong in Lp) is
crucial for passing to the limit in nonlinear terms and establishing the existence
of minimizers for variational problems involving the fractional p-Laplacian. We
observe that:

lim inf
l→+∞

∫
Ω
fukl dx = lim

l→+∞

∫
Ω
fukl dx =

∫
Ω
fu dx.
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Moreover, the following inequality holds:∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy ≤

∫
Ω
fu dx+m+ ϵ, ∀ϵ ≥ 0.

Consequently, the functional F evaluated at u satisfies:

F (u, u) =

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy −

∫
Ω
fu dx ≤ m+ ϵ, ∀ϵ ≥ 0.

This leads to the conclusion:

F (u, u) ≤ m =⇒ F (u, u) = m.

3. Shape derivative via Minmax method

3.1. Some preliminary results

In this subsection, we present the methodology for computing the topological
derivative of a cost functional associated with a fractional p-Laplacian problem,
using the min-max variational framework. This approach is inspired by the works
of Delfour and Zolésio [8] and further developed in [27], where topological sen-
sitivity analysis is formulated in terms of perturbations of the domain by small
inclusions.

Definition 3. A Lagrangian function is a mapping of the form

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R, with τ > 0,

where X is a vector space, Y is a non-empty subset of a vector space, and for
fixed t ∈ [0, τ ] and x ∈ X, the function y 7→ L(t, x, y) is affine.

We associate to the parameter t ∈ [0, τ ] the parametrized minimax function:

g(t) = inf
x∈X

sup
y∈Y

L(t, x, y), where τ > 0,

and define its right derivative at zero as:

dg(0) = lim
t→0+

g(t)− g(0)

t
.
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Whenever the relevant limits exist, we adopt the following notation for partial
directional derivatives of the Lagrangian L:
Time derivative:

dtL(0, x, y) = lim
t→0+

L(t, x, y)− L(0, x, y)

t
.

Derivative with respect to x in direction φ ∈ X:

dxL(t, x, y;φ) = lim
θ→0+

L(t, x+ θφ, y)− L(t, x, y)

θ
.

Derivative with respect to y in direction ϕ ∈ Y :

dyL(t, x, y;ϕ) = lim
θ→0+

L(t, x, y + θϕ)− L(t, x, y)

θ
.

Since the function y 7→ L(t, x, y) is affine for all (t, x) ∈ [0, τ ]×X, it follows that:

∀ y, ψ ∈ Y, dyL(t, x, y, ψ) = L(t, x, ψ)− L(t, x, 0) = dyL(t, x, 0, ψ).

State Equation For each t ≥ 0, the state equation is:

Find xt ∈ X such that dyL(t, x
t, 0, ψ) = 0 ∀ψ ∈ Y.

The corresponding set of admissible states is denoted by:

E(t) =
{
xt ∈ X

∣∣ dyL(t, xt, 0, ψ) = 0 for all ψ ∈ Y
}
.

Adjoint Equation For each t ≥ 0, the adjoint equation is:

Find pt ∈ Y such that dxL(t, x
t, pt, φ) = 0 ∀φ ∈ X.

The corresponding set of adjoint solutions is given by:

Y (t, xt) =
{
pt ∈ Y

∣∣ dxL(t, xt, pt, φ) = 0 for all φ ∈ X
}
.

Set of Minimisers Finally, the set of minimisers for the parametrized minimax
problem is defined as:

X(t) =

{
xt ∈ X

∣∣∣∣∣ g(t) = inf
x∈X

sup
y∈Y

L(t, x, y) = sup
y∈Y

L(t, xt, y)

}
.
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Lemma 2. The following statements hold:
- (i)

inf
x∈X

sup
y∈Y

L(t, x, y) = inf
x∈E(t)

L(t, x, 0).

- (ii) The minimax value g(t) = +∞ if and only if E(t) = ∅. In this case, the
set of minimizers satisfies X(t) = X.

- (iii) If E(t) ̸= ∅, then:

X(t) =

{
xt ∈ E(t)

∣∣∣∣ L(t, xt, 0) = inf
x∈E(t)

L(t, x, 0)

}
⊂ E(t),

and the minimax value g(t) < +∞.

Proof. See [8, 9, 10].

Hypothesis (H0).
Let X be a vector space. We assume the following conditions hold:

- (i) For every t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t), and y ∈ Y , the mapping

θ 7→ L(t, x0 + θ(xt − x0), y) : [0, 1] → R

is absolutely continuous. This implies that for almost every θ ∈ [0, 1], the deriva-
tive exists and is given by

d

dθ
L(t, x0 + θ(xt − x0), y) = dxL(t, x

0 + θ(xt − x0), y, xt − x0),

and the function satisfies the integral representation:

L(t, xt, y) = L(t, x0, y) +

∫ 1

0
dxL(t, x

0 + θ(xt − x0), y, xt − x0) dθ.

- (ii) For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t), y ∈ Y , and ϕ ∈ X, the directional
derivative

dxL(t, x
0 + θ(xt − x0), y, ϕ)

exists for almost every θ ∈ [0, 1], and the function

θ 7→ dxL(t, x
0 + θ(xt − x0), y, ϕ)

belongs to L1([0, 1]).

Definition 4. Given x0 ∈ X(0) and xt ∈ X(t), the averaged adjoint equation is:

Find yt ∈ Y ∀ ϕ ∈ X,

∫ 1

0
dxL(t, x

0 + θ(xt − x0), y, ϕ) dθ = 0

and the set of solutions is noted Y (t, x0, xt).
Y (0, x0, x0) clearly reduces to the set of standard adjoint states Y (0, x0) at t = 0.
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Theorem 6. Let

L(t, x, y) : [0, τ ]×X × Y → R, τ > 0,

be a Lagrangian functional, where X and Y are vector spaces, and for each fixed
(t, x), the mapping y 7→ L(t, x, y) is affine.

Assume that Hypothesis (H0) holds, along with the following conditions:
- (H1) For all t ∈ [0, τ ], the minimax value g(t) = infx∈X supy∈Y L(t, x, y) is

finite, and the sets of minimizers and adjoint solutions are singletons:

X(t) = {xt}, Y (0, x0) = {p0}.

- (H2) The partial derivative with respect to t at t = 0 exists:

dtL(0, x
0, p0) exists.

- (H3) The following limit exists:

R(x0, p0) = lim
t→0+

∫ 1

0
dxL

(
t, x0 + θ(xt − x0), p0,

xt − x0

t

)
dθ.

Then the right derivative of the minimax function at t = 0 exists and is given
by:

dg(0) = dtL(0, x
0, p0) +R(x0, p0).

Proof. See [8, 9].

Corollary 1. Let

L(t, x, y) : [0, τ ]×X × Y → R, τ > 0,

be a Lagrangian functional, where X and Y are vector spaces, and for each fixed
(t, x), the mapping y 7→ L(t, x, y) is affine.

Assume that Hypothesis (H0) holds, along with the following conditions:
- (H1a) For all t ∈ [0, τ ], the set X(t) is non-empty, the minimax value g(t)

is finite, and for each x ∈ X(0), the set Y (0, x) is non-empty.
- (H2a) For all x ∈ X(0) and p ∈ Y (0, x), the partial derivative dtL(0, x, p)

exists.
- (H3a) There exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that the following limit

exists:

R(x0, p0) = lim
t→0+

∫ 1

0
dxL

(
t, x0 + θ(xt − x0), p0,

xt − x0

t

)
dθ.

Then the right derivative of the minimax function at t = 0 exists, and there
exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that:

dg(0) = dtL(0, x
0, p0) +R(x0, p0).
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In the following, we focus on the principal result concerning the shape deriva-
tive of the functional. For further details and theoretical background, the reader
is referred to the works of [8, 9, 27].

3.2. The shape derivative of the functional

Shape optimization involves deforming a domain in a controlled and math-
ematically ideal manner to minimize or maximize a given cost functional. To
formalize such deformations, we adopt a differential framework that draws an
analogy between domain variations and classical derivatives. This approach is
well-established in the literature; see, for example, [1, 10]. The derivative of the
cost functional F (Ω), with respect to domain variations, plays a central role in
identifying descent directions and characterizing optimal shapes.
Let V ∈ C1

c (RN ;RN ) be a smooth vector field with compact support, meaning
that V is continuously differentiable and vanishes outside a compact subset of
RN . This vector field represents the direction and magnitude of an infinitesimal
deformation applied to the domain.
Using this field, we define a family of transformations of the space, parameterized
by ϵ ∈ R, as follows:

Φϵ(x) = x+ ϵV (x), x ∈ RN .

For sufficiently small values of |ϵ|, the map Φϵ is a diffeomorphism from RN onto
its image. It generates a family of perturbed domains given by Ωϵ = Φϵ(Ω), which
is used in the variational analysis of shape functionals.
This framework allows us to define the shape derivative of J at Ω in the direction
V as:

DF (Ω)[V ] = lim
ϵ→0

F (Ωϵ)− F (Ω)

ϵ
,

provided the limit exists. The computation of this derivative typically involves
differentiating the state equation with respect to the domain and applying
variational techniques to extract sensitivity information. We now give a provide
the proof of Theorem 2 by applying Theorem 6.

Proof. of theorem 2
Let us consider the functionnal defined in Ωϵ by

F (Ωϵ) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy. (9)
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where uΩϵ be the solution to the following p-Laplacian operator
(−∆)spu = f in Ωϵ,

u = 0 on RN \ Ωϵ,

p ≥ 2.

(10)

Let us consider as shape functional F define by

F (Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy (11)

and uΩ ∈W s,p
0 (Ω) is solution to the variational problem∫

R2N

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))(vΩ(x)− vΩ(y))

| x− y |N+ps
dxdy =

∫
Ω
f(x)vΩ(x)dx ∀v ∈W s,p(Ω).

(12)
In the context of the perturbed domain, the expression labeled as 12 is reformu-
lated as follows:∫

R2N

| uϵ(x)− uϵ(y) |p−2 (uϵ(x)− uϵ(y))(v(x)− v(y))

| x− y |N+ps
dxdy =

∫
Ω
f(x)v(x)dx

(13)
We return to the initial domain Ω via the transformation Φϵ, exploiting the
identity Ωϵ = Φϵ(Ω). This change of variables allows us to express integrals over
the perturbed domain Ωϵ in terms of the reference domain Ω. Specifically, for
any integrable function g : Ωϵ → R, we have:∫

Ωϵ

g(x) dx =

∫
Ω
g(Φϵ(x)) |detDΦϵ(x)| dx,

where DΦϵ(x) denotes the Jacobian matrix of the transformation and
| detDΦϵ(x)| its determinant. This pullback technique is essential for comput-
ing shape derivatives, as it enables us to differentiate the cost functional J(Ωϵ)
with respect to ϵ while remaining in the fixed domain Ω. The derivative of the
functional can then be expressed in terms of the deformation field V , the solu-
tion u, and the adjoint state, facilitating the derivation of first-order optimality
conditions.∫
R2N

| uϵ(x)− uϵ(y) |p−2 (uϵ(x)− uϵ(y))(v(x)− v(y))

| x− y |N+ps
◦ ΦϵJacΦϵ(x)JacΦϵ(y) dxdy

=

∫
Ω
(fv) ◦ ΦϵJacΦt(x) dx.
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It is also possible to express∫
RN

∫
RN

| uϵ(x)− uϵ(y) |p−2 (uϵ(x)− uϵ(y))(v ◦ Φ(x)− v ◦ Φϵ(y))

|Φϵ(x)− Φϵ(y)|N+ps
JacΦ(x)JacΦϵ (y) dxdy

=

∫
Ω
f ◦ Φϵv ◦ ΦϵJacΦϵ(x) dx.

By introducing the change of variables ϕ = v ◦ Φε, we obtain:∫
RN

∫
RN

| uϵ(x)− uϵ(y) |p−2 (u(x)− uϵ(y))(ϕ(x)− ϕ(y))

|Φϵ(x)− Φϵ(y)|N+ps
JacΦϵ(x)JacΦϵ(y) dxdy

=

∫
Ω
f ◦ ΦϵϕJacΦϵ(x) dx.

By defining Kϵ(x, y) = C(N, s)
JacΦϵ(x) JacΦϵ(y)

|Φϵ(x)− Φϵ(y)|N+ps
, the preceding expression

transforms into:

1

C(N, s)

∫
RN

∫
RN

| uϵ(x)− uϵ(y) |p−2 (u(x)− uϵ(y))(ϕ(x)− ϕ(y))Kϵ(x, y) dxdy

=

∫
Ω
f ◦ ΦϵϕJacΦϵ(x) dx.

The objective functional associated with the perturbed domain Ω is given by

F (Ω) = C(N, s)

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dxdy. (14)

Similarly, we return to the unperturbed domain via the transformation Φϵ. By
performing this change of variables, we obtain an equivalent expression for the
functional over the original domain Ω, now involving the pullback of the integrand
and the Jacobian determinant associated with Φϵ.

F (Ωϵ) = C(N, s)

∫
RN

∫
RN

|uϵ(x)− uϵ(y)|p−2(uϵ(x)− uϵ(y))

|x− y|N+ps
◦ ΦϵJacΦϵ(x)JacΦϵ(y) dxdy

= C(N, s)

∫
RN

∫
RN

|uϵ(x)− uϵ(y)|p−2(uϵ(x)− uϵ(y))

|Φ(x)− Φ(y)|N+2s
JacΦϵ(x)JacΦϵ(y) dxdy

=

∫
RN

∫
RN

|uϵ(x)− uϵ(y)|p−2(uϵ(x)− uϵ(y))Kϵ(x, y) dxdy.
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Leveraging the variational framework and the objective functional defined on
the perturbed domain, we construct the corresponding perturbed Lagrangian as
follows:

L(ϵ, φ, ϕ) =

∫
RN

∫
RN

|φ(x)− φ(y)|p−2(φ(x)− φ(y))K(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

φ(x)− φ(y)|p−2(φ(x)− φ(y)) (ϕ(x)− ϕ(y))Kϵ(x, y) dxdy

−
∫
Ω
(f ◦ Φϵ)ϕ(x)JacΦϵ(x) dx.

The derivative of the Lagrangian with respect to is given by:

dL(ϵ, φ, ϕ) =

∫
RN

∫
RN

|φ(x)− φ(y)|p−2(φ(x)− φ(y))K ′
(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

|φ(x)− φ(y)|p−2(φ(x)− φ(y)) (ϕ(x)− ϕ(y))K ′
ϵ(x, y) dxdy

−
∫
Ω
(∇f · V (ϵ))ϕJacΦϵ(x) dx−

∫
Ω
(f ◦ Φϵ)ϕJacΦϵ(x)divV (ϵ) ◦ Φϵ dx

where

K ′
ϵ(x, y)

∣∣
ϵ=0

= −
[
(N + 2s)

x− y

|x− y|
· PV (x, y)− (divV (x) + divV (y))

]
K0(x, y)

and PV ∈ L∞(RN × RN ) is given by

PV (x, y) =
V (x)− V (y)

|x− y|
.

To construct the function R(), we evaluate the derivative of the Lagrangian with
respect to φ along a chosen direction φ′. This process yields:”

dφL(ϵ, φ, ϕ;φ
′) =

∫
R2N

(p− 2)(−1)p−2(φ(x)− φ(y))p−3(φ′(x)− φ′(y))(φ(x)− φ(y))Kϵ(x, y) dxdy

+

∫
R2N

(−1)p−2(φ(x)− φ(y))p−2(φ′(x)− φ′(y))Kϵ(x, y) dxdy

+
(p− 2)(−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−3(φ′(x)− φ′(y))(φ(x)− φ(y))(ϕ(x))Kϵ(x, y)

− (p− 2)(−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−3(φ′(x)− φ′(y))(φ(x)− φ(y))(ϕ(y))Kϵ(x, y)

− (−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−2(φ′(x)− φ′(y))(φ(x) + φ(y))(ϕ(y))Kϵ(x, y) dxdy
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dφL(ϵ, φ, ϕ;φ
′) =

∫
R2N

(p− 2)(−1)p−2(φ(x)− φ(y))p−2(φ′(x)− φ′(y))K(x, y) dxdy

+

∫
R2N

(−1)p−2(φ(x)− φ(y))p−2(φ′(x)− φ′(y))K(x, y) dxdy

+
(p− 2)(−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−2(φ′(x)− φ′(y))(ϕ(x))K(x, y) dxdy

− (p− 2)(−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−2(φ′(x)− φ′(y))(ϕ(y))Kϵ(x, y) dxdy

+
(−1)p−2

C(N, s)

∫
R2N

(φ(x)− φ(y))p−2(φ′(x)− φ′(y))(ϕ(y)− ϕ(y))Kϵ(x, y) dxdy

=

∫
R2N

(p− 1)|φ(x)− φ(y)|p−2(φ′(x)− φ′(y))Kϵ(x, y) dxdy

+
(p− 1)

C(N, s)

∫
R2N

|φ(x)− φ(y)|p−2(φ′(x)− φ′(y))(ϕ(x)− ϕ(y))Kϵ(x, y) dxdy.

=

∫
R2N

(p− 1)|φ(x)− φ(y)|p−2(φ′(x)− φ′(y))Kϵ(x, y) dxdy

+
(p− 1)

C(N, s)

∫
R2N

|φ(x)− φ(y)|p−2(φ′(x)− φ′(y))(ϕ(x)− ϕ(y))Kϵ(x, y) dxdy.

R(ϵ) =

∫
RN

∫
RN

(p− 1)

∣∣∣∣(uϵ(x) + u(x)

2

)
−
(
uϵ(y) + u(y)

2

)∣∣∣∣p−2 [(uϵ(x)− u(x)

ϵ

)]
K(x, y) dxdy

−
∫
RN

∫
RN

(p− 1)

∣∣∣∣(u(x) + u(x)

2

)
−
(
u(y) + u(y)

2

)∣∣∣∣p−2 [(
uϵ(y)− u(y)

ϵ

)]
Kϵ(x, y) dxdy

+
(p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x) + u(x)

2

)
−
(
uϵ(y) + u(y)

2

)∣∣∣∣p−2 [(uϵ(x)− u(x)

ϵ

)]
(p(x)− p(y))Kϵ(x, y) dxdy

− (p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x) + u(x)

2

)
−
(
uϵ(y) + u(y)

2

)∣∣∣∣p−2 [(uϵ(y)− u(y)

ϵ

)]
(p(x)− p(y))Kϵ(x, y) dxdy.

Replacing φ′ with
uϵ − u

ϵ
in the adjoint equation for p, we arrive at the following

expression:∫
RN

∫
RN

(p− 1)|u(x)− u(y)|p−2

[(
uϵ(x)− u(x)

ϵ

)
−
(
uϵ(y)− u(y)

ϵ

)]
K(x, y) dxdy

+
(p− 1)

C(N, s)

∫
RN

∫
RN

|u(x)− u(y)|p−2

(
uϵ(x)− u(x)

ϵ

)
(p(x)− p(y))Kϵ(x, y) dxdy
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− (p− 1)

C(N, s)

∫
RN

∫
RN

|u(x)− u(y)|p−2

(
uϵ(y)− u(y)

ϵ

)
(p(x)− p(y))Kϵ(x, y) dxdy = 0.

R() =

∫
RN

∫
RN

(p− 1)

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(x)− u(x)

ϵ

)]
K(x, y) dxdy

−
∫
RN

∫
RN

(p− 1)

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(y)− u(y)

ϵ

)]
K(x, y) dxdy

+
(p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(x)− u(x)

ϵ

)]
(p(x))Kϵ(x, y)

+
(p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(x)− u(x)

ϵ

)]
(−p(y))Kϵ(x, y)

− (p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(y)− u(y)

ϵ

)]
(p(x))Kϵ(x, y)

− (p− 1)

C(N, s)

∫
R2N

∣∣∣∣(uϵ(x)− uϵ(y)

2

)
+

(
u(x)− u(y)

2

)∣∣∣∣p−2 [(uϵ(y)− u(y)

ϵ

)]
(−p(y))Kϵ(x, y).

4. Conclusion and perspectives

We have presented a framework for shape optimization involving fractional p-
Laplacian operators. After proving the existence of weak solutions, we derived the
shape derivative using the minmax method. Future work will focus on numerical
simulations and the extension of this approach to include topological derivatives.
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