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Commutators of the maximal function with BMO
functions on total mixed Morrey spaces
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Abstract. In this paper, we introduce the total mixed Morrey spaces Lp⃗,λ,µ(Rn) and
establish some basic properties and embeddings. We prove the boundedness of the max-
imal commutator operator Mb and the commutator of the maximal operator [b,M ] on
total mixed Morrey spaces Lp⃗,λ,µ(Rn). Using the boundedness results, we obtain some
new characterizations for certain subclasses of the BMO(Rn) space.
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1. Introduction

Classical Morrey spaces Lp,λ were originally introduced by Morrey in [19]
to study the local behavior of solutions of second-order elliptic partial differ-
ential equations. In 2022, Guliyev [13] introduced a variant of Morrey spaces
called total Morrey spaces Lp,λ,µ(Rn), 0 < p < ∞, λ ∈ R and µ ∈ R, see also
[6, 15, 16, 18, 22, 23]. Total Morrey spaces generalize the classical Morrey spaces
Lp,λ(Rn) so that Lp,λ,λ(Rn) ≡ Lp,λ(Rn) and the modified Morrey spaces L̃p,λ(Rn)

so that Lp,λ,0(Rn) = L̃p,λ(Rn), respectively. The subject of mixed-norm function
spaces has undergone great development in the last few decades. Nevertheless,
the standard literature is still the mixed Lebesgue spaces Lp⃗(Rn), 0 < p⃗ ≤ ∞,
as a natural generalization of the classical Lebesgue spaces Lp(Rn), 0 < p ≤ ∞,
it is first introduced by Benedek and Panzone [3] in 1961. Mixed-norm function
spaces possess a more refined structural framework than their classical counter-
parts, thereby enabling wider applications in analysis such as potential analysis,
harmonic analysis and partial differential equations. In 2019, Nogayama [20] in-
troduced a new Morrey-type space called mixed Morrey space by generalizing
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Morrey spaces and mixed Lebesgue spaces, see also [1, 5, 14, 21]. We intro-
duce the total mixed Morrey spaces Lp⃗,λ,µ(Rn) here. These spaces generalize the
mixed Lebesgue spaces so that Lp⃗,0,0(Rn) ≡ Lp⃗(Rn), the mixed Morrey spaces
so that Lp⃗,λ,λ(Rn) ≡ Lp⃗,λ(Rn) and the modified mixed Morrey spaces so that

Lp⃗,λ,0(Rn) = L̃p⃗,λ(Rn).
The classical Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)|dy,

where f ∈ Lloc
1 (Rn) and |B(x, r)| is the Lebesgue measure of the ball B(x, r).

The sharp maximal function of Fefferman and Stein M ♯f is defined by

M ♯f(x) = sup
B∋x

|B|−1

∫
B
|f(y)− fB|dy,

where the supremum is taken over all balls B ⊂ Rn containing x. These operators
M and M ♯ play an essential role in real and harmonic analysis. The maximal
commutator of M with a locally integrable function b is defined by

Mbf(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|b(x)− b(y)||f(y)|dy.

A (nonlinear) commutator of maximal operator M with a locally integrable
function b is defined by

[b,M ]f(x) = b(x)Mf(x)−M(bf)(x).

Obviously, the operators Mb and [b,M ] are significantly different from each other,
since Mb is positive and sublinear, while [b,M ] is neither positive nor sublinear.

Commutator estimates play an important role in studying the regularity of
solutions of second-order elliptic partial differential equations, and their bound-
edness can be used to characterize some function spaces (see, for instance
[7, 9, 24, 25, 27]). The Mb operator is used to examine the commutators of
singular integral operators with the symbol BMO (see [8, 26]). Note that the
boundedness of the operator Mb on Lp spaces was proved by Garcia-Cuerva et
al. in [8]. The nonlinear commutator [b,M ] of the maximal operator is used to
study the product of a function in H1 and a function in BMO (see [4]). In [2]
Bastero et al. studied the necessary and sufficient conditions for the boundedness
of [b,M ] on Lp spaces.

In this paper we introduce the total mixed Morrey spaces Lp⃗,λ,µ(Rn). We
give basic properties of the spaces Lp⃗,λ,µ(Rn) and study some embeddings into
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the Morrey space Lp⃗,λ,µ(Rn). We obtain the boundedness of maximal commutator
operator Mb and commutator of maximal operator [b,M ] in total mixed Morrey
spaces Lp⃗,λ,µ(Rn). We give some characterizations for some subclasses of the
BMO space by using boundedness results.

The paper is organized as follows. In Section 2 we give basic properties of
the spaces Lp⃗,λ,µ(Rn) and study some embeddings into the total mixed Morrey
space Lp⃗,λ,µ(Rn). In Section 3 we find necessary and sufficient conditions for the
boundedness of the maximal commutator Mb on Lp⃗,λ,µ(Rn) spaces. In Section 4
we find necessary and sufficient conditions for the boundedness of the commutator
of maximal operator [b,M ] on Lp⃗,λ,µ(Rn) spaces.

By A ≲ B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A ≲ B and B ≲ A, we write A ≈ B and say that A
and B are equivalent.

2. Definition and basic properties of total mixed Morrey spaces

For any r > 0 and x ∈ Rn, let B(x, r) = {y : |y − x| < r} be the ball
centered at x with radius r. Let B = {B(x, r) : x ∈ Rn, r > 0} be the set of all
such balls. We also use χE and |E| to denote the characteristic function and the
Lebesgue measure of a measurable set E.

The letter p⃗ denotes n-tuples of the numbers in (0, ∞], (n ≥ 1), p⃗ =
(p1, · · · , pn). By definition, the inequality, for example, 0 < p⃗ < ∞ means

0 < pi < ∞ for all i. For 1 ≤ p⃗ ≤ ∞, we denote
1

P
=

1

n

n∑
i=1

1

pi
, p⃗ ′ = (p′1, · · · , p′n),

where p′i, P
′ satisfies

1

pi
+

1

p′i
= 1,

1

P
+

1

P ′ = 1.

We first recall the definition of mixed Lebesgue space defined in [3].
Let p⃗ = (p1, . . . , pn) ∈ (0,∞]n. Then the mixed Lebesgue norm ∥ · ∥Lp⃗

or
∥ · ∥L(p1,...,pn)

is defined by

∥f∥Lp⃗
≡ ∥f∥L(p1,...,pn)

=
(∫

R
· · ·

(∫
R

(∫
R
|f(x1, x2, . . . , xn)|p1dx1

) p2
p1 dx2

) p3
p2 . . . dxn

) 1
pn ,

where f : Rn → R is a measurable function. If pj = ∞ for some j = 1, . . . , n,
then we have to make appropriate modifications. We define the mixed Lebesgue
space Lp⃗(Rn) = L(p1,...,pn)(Rn) to be the set of all f ∈ L0(Rn) with ∥f∥Lp⃗

< ∞,
where L0(Rn) denotes the set of measurable functions on Rn.

The following analogue of the Hölder’s inequality for Lp⃗ is well known (see,
for example, [29]).
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Theorem 1. Let Ω ⊂ Rn be a measurable set, 1 ≤ p⃗ ≤ ∞ and 1
p⃗ +

1
p⃗′ = 1. Then

for any f ∈ Lp⃗(Ω) and g ∈ Lp⃗′(Ω), the following inequality is valid∫
Ω
|f(x)g(x)|dx ≤ ∥f∥Lp⃗(Ω)∥g∥Lp⃗′ (Ω).

By elementary calculations we have the following property.

Lemma 1. Let 0 < p⃗ < ∞ and B be a ball in Rn. Then

∥χB∥Lp⃗
= ∥χB∥WLp⃗

= |B|
1
P .

By Theorem 1 and Lemma 1 we get the following estimate.

Lemma 2. For 1 ≤ p⃗ < ∞ and for the balls B = B(x, r) the following inequality
is valid: ∫

B
|f(y)|dy ≤ |B|

1
P ′ ∥f∥Lp⃗(B).

The following lemma is the Lebesgue differentiation theorem in mixed-norm
Lebesgue spaces.

Lemma 3. [29, Lemma 2.4] Let f ∈ Lloc
1 (Rn) and 0 < p⃗ < ∞, then

lim
r→0

∥χ
B(x,r)

∥−1
Lp⃗

∥f∥Lp⃗(B(x,r)) = |f(x)| a.e. x ∈ Rn.

In the following we define the mixed total Morrey spaces Lp⃗,λ,µ(Rn).

Definition 1. Let 0 < p⃗ < ∞, λ ∈ R, µ ∈ R, [t]1 = min{1, t}, t > 0. We denote
by Lp⃗,λ(Rn) the mixed Morrey space [20], by L̃p⃗,λ(Rn) the modified mixed Morrey
space [12], and by Lp⃗,λ,µ(Rn) the total mixed Morrey space the set of all locally
integrable functions f with the following finite norms

∥f∥Lp⃗,λ
= sup

x∈Rn, t>0
t−

λ
P ∥f∥Lp⃗(B(x,t)),

∥f∥
L̃p⃗,λ

= sup
x∈Rn, t>0

[t]
− λ

P
1 ∥f∥Lp⃗(B(x,t))

and

∥f∥Lp⃗,λ,µ
= sup

x∈Rn, t>0
[t]

− λ
P

1 [1/t]
µ
P
1 ∥f∥Lp⃗(B(x,t)),

respectively.
122



Definition 2. Let 0 < p⃗ < ∞, λ ∈ R and µ ∈ R. We define the weak mixed
Morrey space WLp⃗,λ(Rn) [20], the weak modified mixed Morrey space WL̃p⃗,λ(Rn)
[12] and the weak total mixed Morrey space WLp⃗,λ,µ(Rn) as the set of all locally
integrable functions f with finite norms

∥f∥WLp⃗,λ
= sup

x∈Rn, t>0
t−

λ
P ∥f∥WLp⃗(B(x,t)),

∥f∥
WL̃p⃗,λ = sup

x∈Rn, t>0
[t]

− λ
P

1 ∥f∥WLp⃗(B(x,t))

and

∥f∥WLp⃗,λ,µ
= sup

x∈Rn, t>0
[t]

− λ
P

1 [1/t]
µ
P
1 ∥f∥WLp⃗(B(x,t)),

respectively.

Note that

Lp⃗,0,0(Rn) = L̃p⃗,0(Rn) = Lp⃗,0(Rn) = Lp⃗(Rn),

WLp⃗,0,0(Rn) = WL̃p⃗,0(Rn) = WLp⃗,0(Rn) = WLp⃗(Rn),

Lp⃗,λ,λ(Rn) = Lp⃗,λ(Rn), Lp⃗,λ,0(Rn) = L̃p⃗,λ(Rn),

∥f∥WLp⃗,λ,µ
≤ ∥f∥Lp⃗,λ,µ

and therefore Lp⃗,λ,µ(Rn) ⊂ WLp⃗,λ,µ(Rn)

and

Lp⃗,λ,µ(Rn) ⊂≻ Lp⃗,λ(Rn), µ ≤ λ and ∥f∥Lp⃗,λ
≤ ∥f∥Lp⃗,λ,µ

, (1)

Lp⃗,λ,µ(Rn) ⊂≻ Lp⃗,µ(Rn), µ ≤ λ and ∥f∥Lp⃗,µ
≤ ∥f∥Lp⃗,λ,µ

(2)

L̃p⃗,λ(Rn) ⊂≻ Lp⃗(Rn) and ∥f∥Lp⃗
≤ ∥f∥

L̃p⃗,λ

and if λ < 0 or λ > n, then Lp⃗,λ(Rn) = L̃p⃗,λ(Rn) = WLp⃗,λ(Rn) = WL̃p⃗,λ(Rn) =
Θ. Here Θ ≡ Θ(Rn) is the set of all functions on Rn that are equivalent to 0.

Lemma 4. If 0 < p⃗ < ∞, 0 ≤ µ ≤ λ ≤ n, then

Lp⃗,λ,µ(Rn) = Lp⃗,λ(Rn) ∩ Lp⃗,µ(Rn)

and

∥f∥Lp⃗,λ,µ(Rn) = max
{
∥f∥Lp⃗,λ(Rn), ∥f∥Lp⃗,µ(Rn)

}
.

Proof. Let f ∈ Lp⃗,λ,µ(Rn) and 0 ≤ µ ≤ λ ≤ n. Then from (1) and (2) we get

f ∈ Lp⃗,λ(Rn) ∩ Lp⃗,µ(Rn) and max
{
∥f∥Lp⃗,λ(Rn), ∥f∥Lp⃗,µ(Rn)

}
≤ ∥f∥Lp⃗,λ,µ(Rn).
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Let f ∈ Lp⃗,λ(Rn) ∩ Lp⃗,µ(Rn). Then

∥f∥Lp⃗,λ,µ
= sup

x∈Rn,t>0
[t]

− λ
P

1 [1/t]
µ
P
1 ∥f∥Lp⃗(B(x,t))

= max

{
sup

x∈Rn,0<t≤1
t−

λ
P ∥f∥Lp⃗(B(x,t)), sup

x∈Rn,t>1
[1/t]

µ
P
1 ∥f∥Lp⃗(B(x,t))

}
≤ max

{
∥f∥Lp⃗,λ

, ∥f∥Lp⃗,µ

}
.

Thus, f ∈ Lp⃗,λ,µ(Rn) and ∥f∥Lp⃗,λ,µ(Rn) ≤ max
{
∥f∥Lp⃗,λ

, ∥f∥Lp⃗,µ

}
.

Therefore Lp⃗,λ,µ(Rn) = Lp⃗,λ(Rn) ∩ Lp⃗,µ(Rn) and
max

{
∥f∥Lp⃗,λ,µ

= ∥f∥Lp⃗,λ
, ∥f∥Lp⃗,µ

}
.

Corollary 1. If 0 < p⃗ < ∞, 0 ≤ λ ≤ n, then

L̃p⃗,λ(Rn) = Lp⃗,λ(Rn) ∩ Lp⃗(Rn)

and
∥f∥

L̃p⃗,λ
= max

{
∥f∥Lp⃗,λ

, ∥f∥Lp⃗

}
.

Analogously proved

Lemma 5. If 0 < p⃗ < ∞, 0 ≤ µ ≤ λ ≤ n, then

WLp⃗,λ,µ(Rn) = WLp⃗,λ(Rn) ∩WLp⃗,µ(Rn)

and
∥f∥WLp⃗,λ,µ(Rn) = max

{
∥f∥WLp⃗,λ

, ∥f∥WLp⃗,µ

}
.

Remark 1. If 0 < p⃗ < ∞, and µ < 0 or λ > n, then

Lp⃗,λ,µ(Rn) = WLp⃗,λ,µ(Rn) = Θ(Rn).

Lemma 6. If 0 < p⃗ < ∞, 0 ≤ λ2 ≤ λ1 ≤ n and 0 ≤ µ1 ≤ µ2 ≤ n, then

Lp⃗,λ1,µ1
(Rn) ⊂≻ Lp⃗,λ2,µ2

(Rn)

and
∥f∥Lp⃗,λ2,µ2

≤ ∥f∥Lp⃗,λ1,µ1
.

Proof. Let f ∈ Lp⃗,λ1,µ1
, 0 < p⃗ < ∞, 0 ≤ λ2 ≤ λ1 ≤ n, 0 ≤ µ1 ≤ µ2 ≤ n.

Then

∥f∥Lp⃗,λ2,µ2
= max

{
sup

x∈Rn, 0<t≤1
t−

λ1−λ2
P t−

λ1
P ∥f∥Lp⃗(B(x,t)),

sup
x∈Rn, t≥1

t−
µ1−µ2

P t−
µ1
P ∥f∥Lp⃗(B(x,t))

}
≤ ∥f∥Lp⃗,λ1,µ1

.
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Lemma 7. If 0 < p⃗ < ∞, 0 ≤ λ ≤ n and 0 ≤ µ ≤ n, then

Lp⃗,n,µ(Rn) ⊂≻ L∞(Rn) ⊂≻ Lp⃗,λ,n(Rn)

and

∥f∥Lp⃗,λ,n
≤ v

1
P
n ∥f∥L∞ ≤ ∥f∥Lp⃗,n,µ

.

Proof. Let f ∈ L∞(Rn). Then for all x ∈ Rn and 0 < t ≤ 1

t−
λ
P ∥f∥Lp⃗(B(x,t)) ≤ v

1
P
n ∥f∥L∞ , 0 ≤ λ ≤ n

and for all x ∈ Rn and t ≥ 1

t−
n
P ∥f∥Lp⃗(B(x,t)) ≤ v

1
P
n ∥f∥L∞ .

Thus f ∈ Lp⃗,λ,n(Rn) and

∥f∥Lp⃗,λ,n
≤ v

1
P
n ∥f∥L∞ .

Let f ∈ Lp⃗,n,µ(Rn). By the Lebesgue’s differentiation theorem we have (see
Lemma 3)

lim
t→0

|B(x, t)|−
1
P ∥f∥Lp⃗(B(x,t)) = |f(x)| for a.e. x ∈ Rn.

Then for a.e. x ∈ Rn

|f(x)| = |B(x, t)|−
1
P ∥f∥Lp⃗(B(x,t))

≤ v
− 1

P
n sup

x∈Rn, 0<t≤1
t−

n
P ∥f∥Lp⃗(B(x,t))

≤ v
− 1

P
n ∥f∥Lp⃗,n,µ

.

Thus f ∈ L∞(Rn) and

∥f∥L∞ ≤ v
− 1

P
n ∥f∥Lp⃗,n,µ

.

Corollary 2. If 0 < p⃗ < ∞, then

L̃p⃗,n(Rn) ⊂≻ L∞(Rn) ⊂≻ Lp⃗,n(Rn)

and

∥f∥Lp⃗,n
≤ v

1
P
n ∥f∥L∞ ≤ ∥f∥

L̃p⃗,n
.
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Lemma 8. If 0 ≤ λ < n, 0 ≤ µ < n, 0 ≤ α < n− λ and 0 ≤ β < n− µ, then for
n−λ
α ≤ p⃗ ≤ n−µ

β
Lp⃗,λ,µ(Rn) ⊂≻ L1⃗,n−α,n−β(R

n)

and for f ∈ Lp⃗,λ,µ(Rn) the inequality

∥f∥L1⃗,n−α,n−β
≤ v

1
P ′
n ∥f∥Lp⃗,λ,µ

holds.

Proof. Let 0 < α < n, 0 ≤ λ < n, f ∈ Lp⃗,λ,µ(Rn) and n−λ
α ≤ p⃗ ≤ n−µ

β . By
the Hölder’s inequality (see Theorem 1) we have

∥f∥L1⃗,n−α,n−β
= sup

x∈Rn, t>0
[t]α−n

1 [1/t]n−β
1 ∥f∥L1(B(x,t))

sup
x∈Rn, t>0

[t]α−n
1 [1/t]n−β

1 ∥f∥Lp⃗(B(x,t)) ∥1∥Lp⃗ ′ (B(x,t))

≤ v
1
P ′
n sup

x∈Rn, t>0

(
[t]1 t

−1
)−∑n

i=1
1
p′
i [t]

α−n−λ
P

1 [1/t]
n−β− µ

P
1

× [t]
− λ

P
1 [1/t]

µ
P
1 ∥f∥Lp⃗(B(x,t))

≤ v
1
P ′
n ∥f∥Lp⃗,λ,µ

sup
t>0

(
[t]1 t

−1
)n−µ

P

)
−β

[t]
α−n−λ

P
1 .

Note that

sup
t>0

(
[t]1 t

−1
)n−µ

P
−β

[t]
α−n−λ

P
1

= max
{

sup
0<t≤1

tα−
n−λ
P

)
, sup
t>1

tβ−
n−µ
P

)}
< ∞

⇐⇒ n− λ

α
≤ p⃗ ≤ n− µ

β
.

Thus f ∈ L1⃗,n−α,n−β(R
n) and

∥f∥L1⃗,n−α,n−β
≤ v

1
P ′
n ∥f∥Lp⃗,λ,µ

.

From Lemma 8 we obtain the following results.

Corollary 3. If 0 ≤ µ ≤ λ < n, 0 ≤ α < n− λ, then for n−λ
α ≤ p⃗ ≤ n−µ

α

Lp⃗,λ,µ(Rn) ⊂≻ L1⃗,n−α(R
n)
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and for f ∈ Lp⃗,λ,µ(Rn) the inequality

∥f∥L1⃗,n−α
≤ v

1
P ′
n ∥f∥Lp⃗,λ,µ

holds.

Corollary 4. If 0 ≤ λ < n and 0 ≤ α < n− λ, then for p⃗ = n−λ
α

Lp⃗,λ(Rn) ⊂ L1⃗,n−α(R
n) and ∥f∥L1⃗,n−α

≤ v
1
P ′
n ∥f∥Lp⃗,λ

.

Corollary 5. If 0 ≤ λ < n and 0 ≤ α < n− λ, then for n−λ
α ≤ p⃗ ≤ n

α

L̃p⃗,λ(Rn) ⊂ L1⃗,n−α(R
n) and ∥f∥L1⃗,n−α

≤ v
1
P ′
n ∥f∥

L̃p⃗,λ
.

Remark 2. Note that in the case p⃗ = (p, . . . , p) Lemmas 4, 5, 6, 7 and 8 was
proved in [13, Lemmas 2, 3, 4, 5 and 6].

3. Lp⃗,λ,µ-boundedness of the maximal commutator operator Mb

In this section, we obtain necessary and sufficient conditions for the bounded-
ness of the maximal commutatorMb on the total mixed Morrey spaces Lp⃗,λ,µ(Rn).

Firstly, in the following lemma we give two local estimates for the maximal
operator M (see also [10, 11]).

Lemma 9. Let 1 ≤ p⃗ < ∞ and B(x, r) be any ball in Rn. If p⃗ > 1, then the
inequality

∥Mf∥Lp⃗(B(x,r)) ≲ r
n
P sup

t>2r
t−

n
P ∥f∥Lp⃗(B(x,t)) (3)

holds for all f ∈ Lloc
p⃗ (Rn).

Moreover if p⃗ = (1, 1, . . . , 1), then the inequality

∥Mf∥WL1⃗(B(x,r)) ≲ rn sup
t>2r

t−n∥f∥L1⃗(B(x,t)) (4)

holds for all f ∈ Lloc
1⃗

(Rn).

Proof. Let 1 < p⃗ < ∞. We set f = f1 + f2, where f1 = fχB(x,2r) and
f2 = fχB(x,2r).

Estimate for Mf1: by the boundedness of maximal operator M on Lp⃗(Rn)
(see [20]) we get

∥Mf1∥Lp⃗(B) ≤ ∥Mf1∥Lp⃗(Rn) ≲ ∥f1∥Lp⃗(Rn) = ∥f∥Lp⃗(B(x,2r)).
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We obtain

r
n
P sup

t>2r
t−

n
P ∥f∥Lp⃗(B(x,t))

≥ r
n
P ∥f∥Lp⃗(B(x,2r)) sup

t>2r
t−

n
P ≳ ∥f∥Lp⃗(B(x,2r))

(5)

by using the monotonicity of the functions ∥f∥Lp⃗(B(x,t)) and t
n
P with respect to

t. Therefore we have

∥Mf1∥Lp⃗(B) ≲ r
n
P sup

t>r
t−

n
P ∥f∥Lp⃗(B(x,t)). (6)

Estimate for Mf2: Let y be an arbitrary point in B. If B(y, t)∩(B(x, 2r)) ̸= ∅,
then t > r. If z ∈ B(y, t)∩(B(x, 2r)), then t > |y−z| ≥ |x−z|−|x−y| > 2r−r = r.

On the other hand, B(y, t)∩ (B(x, 2r)) ⊂ B(x, 2t). If z ∈ B(y, t)∩ (B(x, 2r)),
then we obtain |x− z| ≤ |y − z|+ |x− y| < t+ r < 2t.

Thus

Mf2(y) = sup
t>0

1

|B(y, t)|

∫
B(y,t)∩(B(x,2r))

|f(z)|dz

≤ sup
t>r

1

|B(y, t)|

∫
B(x,2t)

|f(z)|dz

≤ sup
t>r

C

|B(y, 2t)|

∫
B(x,2t)

|f(z)|dz

= sup
t>2r

C

|B(y, t)|

∫
B(x,t)

|f(z)|dz.

From Lemma 2 for all y ∈ B we get

Mf2(y) ≲ sup
t>2r

1

|B(y, t)|
t

∑n
i=1

1
p′
i ∥f∥Lp⃗(B(x,t))

≲ sup
t>r

t−
n
P ∥f∥Lp⃗(B(x,t)).

(7)

Therefore we get

∥Mf2∥Lp⃗(B) ≲ ∥χB∥Lp⃗
sup
t>r

t−
n
P ∥f∥Lp⃗(B(x,t))

≲ r
n
P sup

t>r
t−

n
P ∥f∥Lp⃗(B(x,t)).

If p⃗ = 1, then for any ball B = B(x, r) it is clear that

∥Mf∥WL1⃗(B) ≤ ∥Mf1∥WL1⃗(B) + ∥Mf2∥WL1⃗(B).
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From the continuity of the operator M : L1⃗(R
n) → WL1⃗(R

n) we get

∥Mf1∥WL1⃗(B) ≲ ∥f1∥L1⃗(B).

Therefore by (7) we get the inequality (4).

Secondly, in the following theorem we prove the boundedness of the maximal
operator M on the total mixed Morrey spaces.

Theorem 2. 1. If f ∈ L1⃗,λ,µ(R
n), 0 ≤ λ < n and 0 ≤ µ < n, then Mf ∈

WL1⃗,λ,µ(R
n) and

∥Mf∥WL1⃗,λ,µ
≤ C1,λ,µ ∥f∥L1⃗,λ,µ

, (8)

where C1,λ,µ does not depend on f .
2. If f ∈ Lp⃗,λ,µ(Rn), 1 < p⃗ < ∞, 0 ≤ λ < n and 0 ≤ µ < n, then

Mf ∈ Lp⃗,λ,µ(Rn) and

∥Mf∥Lp⃗,λ,µ
≤ Cp⃗,λ,µ ∥f∥Lp⃗,λ,µ

, (9)

where Cp⃗,λ,µ depends only on p⃗,λ,µ and n.

Proof. Let p⃗ = (1, 1, . . . , 1). From the inequality (4) we have

∥Mf∥WL1⃗,λ,µ
= sup

x∈Rn, t>0
[t]−λ

1 [1/t]µ1 ∥Mf∥WL1⃗(B(x,t))

≲ sup
x∈Rn, t>0

[t]−λ
1 [1/t]µ1 t

n sup
τ>2t

τ−n ∥f∥L1⃗(B(x,τ))

≲ ∥f∥L1⃗,λ,µ
sup

x∈Rn, t>0
[t]−λ

1 [1/t]µ1 t
n sup

τ>t
τ−n [τ ]λ1 [1/τ ]

−µ
1

= ∥f∥L1⃗,λ,µ
sup

x∈Rn, t>0
[t]n−λ

1 [1/t]µ−n
1 sup

τ>t
[τ ]λ−n

1 [1/τ ]n−µ
1

≈ ∥f∥L1⃗,λ,µ
sup
τ>1

[τ ]λ−n
1 [1/τ ]n−µ

1 = ∥f∥L1⃗,λ,µ
sup
τ>1

τ−n+µ

= ∥f∥L1⃗,λ,µ

which implies that the operator M is bounded from L1⃗,λ,µ(R
n) to WL1⃗,λ,µ(R

n).
If 1 < p⃗ < ∞, then from the inequality (3) we have

∥Mf∥Lp⃗,λ,µ
= sup

x∈Rn, t>0
[t]

− λ
P

1 [1/t]
µ
P
1 ∥Mf∥Lp⃗(B(x,t))

≲ sup
x∈Rn, t>0

[t]
− λ

P
1 [1/t]

µ
P
1 t

n
p sup

τ>2t
τ−

n
P ∥f∥Lp⃗(B(x,τ))
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≲ ∥f∥Lp⃗,λ,µ
sup

x∈Rn, t>0
[t]

− λ
P

1 [1/t]
µ
P
1 t

n
P sup

τ>t
τ−

n
P [τ ]

λ
P
1 [1/τ ]

− µ
P

1

= ∥f∥Lp⃗,λ,µ
sup

x∈Rn, t>0
[t]

n−λ
P

1 [1/t]
µ−n
P

1 sup
τ>t

[τ ]
λ−n
P

1 [1/τ ]
n−µ
P

1

≈ ∥f∥Lp⃗,λ,µ
sup
τ>1

[τ ]
λ−n
P

1 [1/τ ]
n−µ
P

1 = ∥f∥Lp⃗,λ,µ
sup
τ>1

τ−
n−µ
P

= ∥f∥Lp⃗,λ,µ

which implies that the operator M is bounded on Lp⃗,λ,µ(Rn).

If we take λ = µ or µ = 0 in Theorem 2, then we get the following results.

Corollary 6. [20] 1. If f ∈ L1⃗,λ(R
n) and 0 ≤ λ < n, then Mf ∈ WL1⃗,λ(R

n)
and

∥Mf∥WL1⃗,λ
≤ C1,λ ∥f∥L1⃗,λ

,

where C1,λ does not depend on f .

2. If f ∈ Lp⃗,λ(Rn), 1 < p⃗ < ∞ and 0 ≤ λ < n, then Mf ∈ Lp⃗,λ(Rn) and

∥Mf∥Lp⃗,λ
≤ Cp⃗,λ ∥f∥Lp⃗,λ

,

where Cp⃗,λ depends only on p, λ and n.

Corollary 7. 1. If f ∈ L̃1⃗,λ(R
n) and 0 ≤ λ < n, then Mf ∈ WL̃1⃗,λ(R

n) and

∥Mf∥
WL̃1⃗,λ

≤ C1,λ ∥f∥L̃1⃗,λ
,

where C1,λ does not depend on f .

2. If f ∈ L̃p⃗,λ(Rn), 1 < p⃗ < ∞ and 0 ≤ λ < n, then Mf ∈ L̃p⃗,λ(Rn) and

∥Mf∥
L̃p⃗,λ

≤ Cp⃗,λ ∥f∥L̃p⃗,λ
,

where Cp⃗,λ depends only on p⃗, λ and n.

Definition 3. The space BMO(Rn) is defined as the set of all locally integrable
functions f with finite norm

∥f∥∗ = sup
x∈Rn,t>0

|B(x, t)|−1

∫
B(x,t)

|f(y)− fB(x,t)|dy < ∞,

where fB(x,t) = |B(x, t)|−1
∫
B(x,t) f(y)dy.
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Theorem 3. [17, Lemma 1] If b ∈ BMO(Rn), then for any q ∈ (0, 1), there
exists a positive constant C such that

M ♯
q

(
Mbf

)
(x) ≤ C∥b∥∗M2f(x) (10)

for every x ∈ Rn and for all f ∈ L1
loc(Rn).

Finally, we give the following theorem, which is one of our main results.

Theorem 4. Let 1 < p⃗ < ∞, 0 ≤ λ ≤ n and 0 ≤ µ ≤ n. The following assertions
are equivalent:

(i) b ∈ BMO(Rn).
(ii) The operator Mb is bounded on Lp⃗,λ,µ(Rn).

Proof. (i) ⇒ (ii). Assume b ∈ BMO(Rn). Combining Theorems 2 and 3, we
obtain

∥Mbf∥Lp⃗,λ,µ
≲ ∥M ♯

q

(
Mbf

)
∥Lp⃗,λ,µ

≲ ∥b∥∗∥M2f∥Lp⃗,λ,µ
≲ ∥b∥∗∥Mf∥Lp⃗,λ,µ

≲ ∥b∥∗∥f∥Lp⃗,λ,µ
.

(ii) ⇒ (i). Suppose Mb is bounded on Lp⃗,λ,µ(Rn). Let B = B(x, r) be a fixed
ball. We consider f = χB . It is easy to compute that

∥χB∥Lp⃗,λ,µ
≈ sup

y∈Rn,t>0
[t]

− λ
P

1 [1/t]
µ
P
1 ∥χB∥Lp⃗(B(y,t))

= sup
y∈Rn,t>0

[t]
− λ

P
1 [1/t]

µ
P
1 |B(y, t) ∩B|

1
P

= sup
B(y,t)⊆B

[t]
− λ

P
1 [1/t]

µ
P
1 |B(y, t)|

1
P

= r
n
P [r]

− λ
P

1 [1/r]
µ
P
1 . (11)

On the other hand, since

Mb(χB)(x) ≳
1

|B|

∫
B
|b(z)− bB|dz for all x ∈ B,

we get

∥Mb(χB)∥Lp⃗,λ,µ
≈ sup

B(y,t)
[t]

− λ
P

1 [1/t]
µ
P
1 ∥|Mb(χB )∥Lp⃗(B(y,t))

≳ r
n
P [r]

− λ
P

1 [1/r]
µ
P
1

1

|B|

∫
B
|b(z)− bB|dz. (12)
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From the assumption

∥Mb(χB)∥Lp⃗,λ,µ
≲ ∥χB∥Lp⃗,λ,µ

,

by (11) and (12), we find that

1

|B|

∫
B
|b(z)− bB|dz ≲ 1.

If we take λ = µ or µ = 0 in Theorem 4, then we get the following results.

Corollary 8. Let 1 < p⃗ < ∞ and 0 ≤ λ ≤ n. The following assertions are
equivalent:

(i) b ∈ BMO(Rn).
(ii) The operator Mb is bounded on Lp⃗,λ(Rn).

Corollary 9. Let 1 < p⃗ < ∞ and 0 ≤ λ ≤ n. The following assertions are
equivalent:

(i) b ∈ BMO(Rn).
(ii) The operator Mb is bounded on L̃p⃗,λ(Rn).

Remark 3. Note that in the case p⃗ = (p, . . . , p) Theorems 2 and 4 were proved
in [13, Theorems 1, 3].

4. Lp⃗,λ,µ-boundedness of the commutator of maximal operator
[b,M ]

In this section we find necessary and sufficient conditions for the boundedness
of the commutator of maximal operator [b,M ] on the total mixed Morrey spaces
Lp⃗,λ,µ(Rn).

Let b be a function b defined on Rn. We denote

b−(x) :=

{
0 , if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). It is clear that b+(x)− b−(x) = b(x).
The following relations hold between [b,M ] and Mb :
Let b be any non-negative locally integrable function. Then for all f ∈

Lloc
1 (Rn) and x ∈ Rn the inequality∣∣[b,M ]f(x)

∣∣ = ∣∣b(x)Mf(x)−M(bf)(x)
∣∣

=
∣∣M(b(x)f)(x)−M(bf)(x)

∣∣ ≤ M(|b(x)− b|f)(x) = Mbf(x)
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holds.

If b is any locally integrable function on Rn, then

|[b,M ]f(x)| ≤ Mbf(x) + 2b−(x)Mf(x), x ∈ Rn (13)

holds for all f ∈ Lloc
1 (Rn) (see, for example [13, 28]).

Let B = B(x, r) be a fixed ball. Denote by MBf the local maximal function
of f :

MBf(x) := sup
B′∋x:B′⊂B

1

|B′|

∫
B′

|f(y)| dy, x ∈ Rn.

Applying Theorem 4, we obtain the following result, which is another of our
main results.

Theorem 5. Let 1 < p⃗ < ∞, 0 ≤ λ ≤ n and 0 ≤ µ ≤ n. Assume that b is a
real-valued locally integrable function on Rn. Then the following assertions are
equivalent:

(i) b ∈ BMO(Rn) such that b− ∈ L∞(Rn).

(ii) The operator [b,M ] is bounded on Lp⃗,λ,µ(Rn).

(iii) There exists a constant C > 0 such that

sup
B

∥
(
b−MB(b)

)
χB∥Lp⃗,λ,µ

∥χB∥Lp⃗,λ,µ

≤ C. (14)

Proof. (i) ⇒ (ii). Assume that b ∈ BMO(Rn). Combining Theorems 2 and
4, and inequality (13), we obtain

∥[b,M ]f∥Lp⃗,λ,µ
≤ ∥Mbf + 2b−Mf∥Lp⃗,λ,µ

≤ ∥Mbf∥Lp⃗,λ,µ
+ ∥b−∥L∞ ∥Mf∥Lp⃗,λ,µ

≲
(
∥b∥∗ + ∥b−∥L∞

)
∥f∥Lp⃗,λ,µ

.

(ii) ⇒ (i). Assume that [b,M ] is bounded on Lp⃗,λ,µ(Rn).

Since

M(bχB)χB = MB(b) and M(χB)χB = χB,

we get(
b−MB(b)

)
χB = b χB −MB(b)χB = bM(χB)−M(bχB) = [b,M ]χB.

Then

∥
(
b−MB(b)

)
χB∥Lp⃗,λ,µ(Rn) = ∥[b,M ]χB∥Lp⃗,λ,µ(Rn).
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Therefore from Lemma 2 and equation (11) we find

1

|B|

∫
B
|b−MB(b)| ≤ |B|−1+ 1

P ′ ∥b−MB(b)∥Lp⃗(B)

≤ |B|−
1
P [r]

λ
P
1 [1/r]

− µ
P

1 ∥bχB −MB(b)∥Lp⃗,λ,µ(Rn)

≲ r−
n
P [r]

λ
P
1 [1/r]

− µ
P

1 ∥[b,M ]χB∥Lp⃗,λ,µ(Rn)

≲ r−
n
P [r]

λ
P
1 [1/r]

− µ
P

1 ∥χB∥Lp⃗,λ,µ
≈ 1.

We set

E := {x ∈ B : b(x) ≤ bB}, F := {x ∈ B : b(x) > bB}.

Since ∫
E
|b(t)− bB| dt =

∫
F
|b(t)− bB| dt,

Considering the inequality b(x) ≤ bB ≤ MB(b), x ∈ E, we find

1

|B|

∫
B
|b− bB| =

2

|B|

∫
E
|b− bB|

≤ 2

|B|

∫
E
|b−MB(b)| ≤

2

|B|

∫
B
|b−MB(b)| ≲ 1.

Consequently, b ∈ BMO(Rn).

To show that b− ∈ L∞(Rn), note that MB(b) ≥ |b|. Hence

0 ≤ b− = |b| − b+ ≤ MB(b)− b+ + b− = MB(b)− b.

Thus

(b−) ≤ c,

and by the Lebesgue differentiation theorem (Lemma 3) we get that

b−(x) ≤ c for a.e. x ∈ Rn.

If we take λ = µ or µ = 0 in Theorem 5, then we get the following results.

Corollary 10. Let 1 < p⃗ < ∞ and 0 ≤ λ ≤ n. Assume that b is a real-valued
locally integrable function in Rn. Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) such that b− ∈ L∞(Rn).

(ii) The operator [b,M ] is bounded on Lp⃗,λ(Rn).
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Corollary 11. Let 1 < p⃗ < ∞ and 0 ≤ λ ≤ n. Assume that b is a real-valued
locally integrable function in Rn. Then the following assertions are equivalent:

(i) b ∈ BMO(Rn) such that b− ∈ L∞(Rn).

(ii) The operator [b,M ] is bounded on L̃p⃗,λ(Rn).

Remark 4. Note that in the case p⃗ = (p, . . . , p) Theorem 5 was proven [13,
Theorem 4].

5. Conclusions

In this paper we introduce the total mixed Morrey spaces Lp⃗,λ,µ(Rn). These
spaces generalize the mixed Lebesgue spaces so that Lp⃗,0,0(Rn) ≡ Lp⃗(Rn), the
mixed Morrey spaces so that Lp⃗,λ,λ(Rn) ≡ Lp⃗,λ(Rn) and the modified mixed

Morrey spaces so that Lp⃗,λ,0(Rn) = L̃p⃗,λ(Rn). We give basic properties of the
spaces Lp⃗,λ,µ(Rn) and study some embeddings into the Morrey space Lp⃗,λ,µ(Rn).
We obtain necessary and sufficient conditions for the boundedness of the max-
imal commutator operator Mb and commutator of maximal operator [b,M ] on
Lp⃗,λ,µ(Rn). Using the boundedness results we obtain some new characterizations
for certain subclasses of BMO(Rn).
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