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Commutators of the maximal function with BMO
functions on total mixed Morrey spaces
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Abstract. In this paper, we introduce the total mixed Morrey spaces Ly x ,,(R™) and
establish some basic properties and embeddings. We prove the boundedness of the max-
imal commutator operator M, and the commutator of the maximal operator [b, M] on
total mixed Morrey spaces Ly x ,(R™). Using the boundedness results, we obtain some
new characterizations for certain subclasses of the BMO(R") space.
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1. Introduction

Classical Morrey spaces Ly, y were originally introduced by Morrey in [19]
to study the local behavior of solutions of second-order elliptic partial differ-
ential equations. In 2022, Guliyev [13] introduced a variant of Morrey spaces
called total Morrey spaces Ly ,(R"), 0 < p < oo,A € R and p € R, see also
[6, 15, 16, 18, 22, 23]. Total Morrey spaces generalize the classical Morrey spaces
L, A(R™) so that Ly y A(R") = L, »(R™) and the modified Morrey spaces Ep, A(R™)
so that Ly » o(R") = Ep, A(R™), respectively. The subject of mixed-norm function
spaces has undergone great development in the last few decades. Nevertheless,
the standard literature is still the mixed Lebesgue spaces Ly(R"), 0 < p’ < o0,
as a natural generalization of the classical Lebesgue spaces L,(R"), 0 < p < oo,
it is first introduced by Benedek and Panzone [3] in 1961. Mixed-norm function
spaces possess a more refined structural framework than their classical counter-
parts, thereby enabling wider applications in analysis such as potential analysis,
harmonic analysis and partial differential equations. In 2019, Nogayama [20] in-
troduced a new Morrey-type space called mixed Morrey space by generalizing
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Morrey spaces and mixed Lebesgue spaces, see also [1, 5, 14, 21]. We intro-
duce the total mixed Morrey spaces Ly y ,(R™) here. These spaces generalize the
mixed Lebesgue spaces so that Lz o(R") = Lz(R"™), the mixed Morrey spaces
so that Lz \(R") = Lzx(R") and the modified mixed Morrey spaces so that

Lﬁz)VO(Rn) = EﬁyA(Rn)'
The classical Hardy-Littlewood maximal operator M is defined by

M (z) = sup | B(a,r)| /B Ly

r>0

where f € L¥°(R") and |B(z,r)| is the Lebesgue measure of the ball B(x,r).
The sharp maximal function of Fefferman and Stein M?*f is defined by

M f(x) = sup |B| ™ / @) — Faldy,
B>z B

where the supremum is taken over all balls B C R™ containing . These operators
M and M? play an essential role in real and harmonic analysis. The maximal
commutator of M with a locally integrable function b is defined by

Myf(z) = sup | B(a,r)| /B o) =)y

r>0

A (nonlinear) commutator of maximal operator M with a locally integrable
function b is defined by

[b, M]f(x) = b(x)M f(x) — M(bf)(x).

Obviously, the operators M}, and [b, M] are significantly different from each other,
since M, is positive and sublinear, while [b, M] is neither positive nor sublinear.

Commutator estimates play an important role in studying the regularity of
solutions of second-order elliptic partial differential equations, and their bound-
edness can be used to characterize some function spaces (see, for instance
[7, 9, 24, 25, 27]). The M, operator is used to examine the commutators of
singular integral operators with the symbol BMO (see [8, 26]). Note that the
boundedness of the operator M, on L, spaces was proved by Garcia-Cuerva et
al. in [8]. The nonlinear commutator [b, M] of the maximal operator is used to
study the product of a function in H; and a function in BMO (see [4]). In [2]
Bastero et al. studied the necessary and sufficient conditions for the boundedness
of [b, M] on L, spaces.

In this paper we introduce the total mixed Morrey spaces L ,(R"). We
give basic properties of the spaces Lj 3 ,(R") and study some embeddings into
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the Morrey space Lj 5 ,(R™). We obtain the boundedness of maximal commutator
operator M; and commutator of maximal operator [b, M] in total mixed Morrey
spaces Ly ,(R™). We give some characterizations for some subclasses of the
BMO space by using boundedness results.

The paper is organized as follows. In Section 2 we give basic properties of
the spaces Ly ,(R™) and study some embeddings into the total mixed Morrey
space Ly ,(R™). In Section 3 we find necessary and sufficient conditions for the
boundedness of the maximal commutator M on Lj  ,(R") spaces. In Section 4
we find necessary and sufficient conditions for the boundedness of the commutator
of maximal operator [b, M] on Lj  ,(R™) spaces.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A ~ B and say that A
and B are equivalent.

2. Definition and basic properties of total mixed Morrey spaces

For any r > 0 and = € R", let B(z,r) = {y : |y — x| < r} be the ball
centered at x with radius r. Let B = {B(z,r) : = € R", r > 0} be the set of all
such balls. We also use xg and |E| to denote the characteristic function and the
Lebesgue measure of a measurable set F.

The letter p denotes n-tuples of the numbers in (0, oo], (n > 1), p =

(p1, -+, pn). By definition, the inequality, for example, 0 < p' < oo means
1 11
0<p;i<ooforalli. Forl <p< oo,wedenoteﬁzg g 2;,ﬁ’:(p'l, ol
i=1 4"
h i, P’ satisfi ! + ! + ! 1
where p/ satisfies — + — =1, = + — = 1.
b p PP

We first recall the definition of mixed Lebesgue space defined in [3].
Let p = (p1,..-,pn) € (0,00]". Then the mixed Lebesgue norm || - || or

.....

,,,,,

P2 P3 1
= </(/ </ |f(z1, 22, ..., xn)\pldm)pldm)m ...dxn)p",
R R R
where f : R" — R is a measurable function. If p; = oo for some j = 1,...,n,

then we have to make appropriate modifications. We define the mixed Lebesgue
space Lz(R™) = Ly, . p,)(R™) to be the set of all f € Lo(R™) with [|f|L, < oo,
where Lo(R™) denotes the set of measurable functions on R".

The following analogue of the Hélder’s inequality for Ly is well known (see,

for example, [29]).
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Theorem 1. Let Q C R” be a measurable set, 1 < < oo and % + I% =1. Then
for any f € Lz(Q2) and g € Ly (R2), the following inequality is valid

1 @a@ldz < 170 ol o0

By elementary calculations we have the following property.

Lemma 1. Let 0 < p'< oo and B be a ball in R™. Then

1
HXB HLﬁ = ”XB HWLﬁ = ’B‘ P
By Theorem 1 and Lemma 1 we get the following estimate.

Lemma 2. For 1 < p'< oo and for the balls B = B(x,r) the following inequality
1s valid:

/B F@)ldy < 1B | llLs)-

The following lemma is the Lebesgue differentiation theorem in mixed-norm
Lebesgue spaces.

Lemma 3. [29, Lemma 2.4] Let f € L'°¢(R™) and 0 < 5 < oo, then
W (X, Iy 1B = /(@) ae xeR™

In the following we define the mixed total Morrey spaces Ly, (R").

Definition 1. Let 0 < p< o0, A € R, p € R, [t]; = min{1,t}, t > 0. We denote
by L (R™) the mized Morrey space [20], by Eﬁ,\(R”) the modified mized Morrey
space [12], and by Ly ,(R™) the total mized Morrey space the set of all locally
integrable functions f with the following finite norms

a
[fllzsn = sup 7P (| fllL B

z€R™ t>0
A
- — P
17, = _sup 177 1m0
and
_A I
1fllpn, = sup [t 7 /U7 1 fll Ly,
xeR" t>0

respectively.
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Definition 2. Let 0 < p < 0o, A € R and p € R. We define the weak mized
Morrey space W Lz x(R™) [20], the weak modified mized Morrey space W Lz »(R™)
[12] and the weak total mized Morrey space W Ly » ,,(R™) as the set of all locally
integrable functions f with finite norms

_A
[fllweg, :x6§22>0t P fllw Ly (B.)
_A
1fllwzon = sup [t 7 [ fllwry )
z€R™ t>0
and
_2A i
Ifllwega, = sup [ty 7 [/ (1 fllw eyt
z€R™, >0
respectively.
Note that

Li00(R™) = Lp(R™) = Lp(R") = Ly(R"™),
WL@O,O(R") = WL@O(]R”) = WLI;"O(]RH) = WLﬁ(R”),
Laa(R™) = LpA(R"),  Lyxo(R") = Lya(R™),
”fHWLﬁ,)\,M < HfHLﬁ,w and therefore Ly, ,(R") C WL, ,(R")
and
Ligau(R") Co Lpa(R™), p < Xand || f[lr,;, < I fllza,. (1)
L u(R") Cp L (R™), p < Aand |[fllzs, < 1fllzya, (2)

Lia(R") O Ly(R") and | flls, < Ifllz, ,

and if A < 0 or A > n, then Ly (R") = LyA(R") = WLzA(R") = WLz(R") =
O. Here © = O(R") is the set of all functions on R™ that are equivalent to 0.

Lemma 4. [f0<p<oo,0< u<A<n, then
L u(R") = Ly x(R™) N Ly, (R")

and

10 gy = 25 {1 F Ly I e }

Proof. Let f € Ly ,(R™) and 0 < pp < XA < n. Then from (1) and (2) we get
f € Lyx(R™) N Ly, (R") and max {HleLz?(Rn), HfHLM(Rn)} <l @m)-



Let f € Ly(R™) N Ly, (R™). Then

_A
1Ly, = sup [th P[l/th 1 F 2Bt
TER™ >0
DY
:max{ sup P || fllLyBp).  Sup [1/75} 1fllz B }
2€R" 0<t<1 c€RMt>1

< max {||f||L5,p HfHL,m} :

Thus, f € Ly, (R") and |z, e < max {1/ sl fll,
Therefore L u(R™) = Lz xR™) N Ly, (R") and
max {|[fllz;, = 1z 11z, -
Corollary 1. If0 < p< oo, 0 <\ <n, then
Lya(R™) = LA (R™) N Lz(R")
and
I1£11z,., = max {I1f 1y £y}
Analogously proved
Lemma 5. [f0<p<oo,0< u<A<n, then
WLgy,(R") = WLz \(R") N WL, (R")
and
I llwigy @y = max {[| fllwry. | fllwes, ) -
Remark 1. If0 < p < oo, and u < 0 or A > n, then
Lau(R") = Wi ,(R") = O(R").
Lemma 6. If0<p <00, 0< <A1 <nand0 < pu <po <n, then
Lﬁ)\hul (Rn) Cs- Lﬁv/\Q:,UQ (Rn)
and
I Zgng iy < N0, 0y

Proof. Let f € Lgx 4, 0<p <00, 0< A2 <A <, 0< g < pp <.
Then

_M—Ae M
HfHLﬁ,AQ,uQZmaX{xeRSUOPQQt Pt P Ly Bt
Br1— l‘2 _H1
sup R ym | < I g

zeR™, t>1
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Lemma 7. If0<p <00, 0<A<nand 0 < pu <n, then

Lpnu(R") Co Loo(R") Con L n(R™)

and
Ifllzpa0 < oElIf . < 111z,
Proof. Let f € Loo(R™). Then for all z € R" and 0 <t < 1

t PHfHL B(z,t)) <Un lfllee, 0<A<n
and for all x € R" and ¢t > 1

n 1
PN lp@y) < o8 1| Lo
Thus f € Ly ,(R") and

1
1fllzsn0 < v [ fll Lo

Let f € Ly

snu(R™). By the Lebesgue’s differentiation theorem we have (see
Lemma 3)

. 1 B
hm [B(z, )77 | |y = [f(2)]

Then for a.e. z € R"

for a.e. x € R™.

[f(2)] = |B(z,t

_n
Un sup P || fll Ly
zeR?, 0<t<1

_1
NP Nl Lp(Bt)

IN
o=

—

" L,
Thus f € Loo(R™) and

1
[ Lee < vn " [l L
Corollary 2. If 0 < p'< oo, then

Lyn(R™) Cs Loo(R™) Cy Ly, (R)
and

1|2z, < oF e < 1Az,
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Lemma 8. I[f0 <A <n, 0< u<n, 0<a<n—XAand 0 < 8 <n—pu, then for
nf/\<ﬁ<ng,u
= Sp< 35—

L@/\’M(Rn> Cx Lf,n—a,n—ﬁ(Rn)
and for f € Ly, (R"™) the inequality

1oy, ., <oF Iflley

DA, 1

holds.

Proof. Let 0 < a <n, 0 < X< n, fe&Lyy,R") and ™7
the Holder’s inequality (see Theorem 1) we have

I, o0y = sup [ (/077 1l
zeR™,t>0

B(z,t))

sup  [97" [1/47 7 1 f L ym

1
U B(z,t)) H HL B(z,t))

1 n n—>\

-5 L _n=X _g_ K
<vf sup ([th t_l) = [t]? P [1/75]? b~»
z€R™, >0

A
x [t] * [1/t]1 1B
P C1\BEE) B (o
<o | fllzg,, sup ([Eit) [t] :
t>0
Note that

1\ "B -8 TA
ggg([tht )Ty

:max{ sup %7 P) suptﬁ )}<oo
0<t<1 t>1

n—\A _, _n-—
= <p<

a 57 B
Thus f € Ly, ., 5(R") and

"

1les, o, <02 Ul

DA
From Lemma 8 we obtain the following results.

Corollary 3. If0< pu<A<n, 0<a<n-—N\, then for B=2 < < Bk



and for f € Lz, (R"™) the inequality

1
1Ls,, o S0 [f g,

I,n—a
holds.

Corollary 4. If 0 <A <nand 0 < a <n— A, thenforﬁ:%)‘

1
Lia(R™) C Ly, (R"Y) and |[fllo;,  <vi" [|fllLz,-

I,n—a
Corollary 5. If0 <A <n and 0 < oo <n— X, then for "2 << 2

Ly \(R™) C Lin_a(R") and ||fllz-

I,n—a

1
<o’ Ifllz,,
Remark 2. Note that in the case p = (p,...,p) Lemmas 4, 5, 6, 7 and 8 was
proved in [13, Lemmas 2, 3, 4, 5 and 6].

3. Ly, ,-boundedness of the maximal commutator operator M,

In this section, we obtain necessary and sufficient conditions for the bounded-
ness of the maximal commutator M on the total mixed Morrey spaces L ,(R").

Firstly, in the following lemma we give two local estimates for the maximal
operator M (see also [10, 11]).

Lemma 9. Let 1 < p' < oo and B(z,r) be any ball in R™. If j > 1, then the
inequality
IMflLyBary) ST Sup t Pl LBy (3)
>2r

holds for all f € L}DL)C(R").
Moreover if p= (1,1,...,1), then the inequality

IM fllwr (B ST" sup N 2B (4)

holds for all f € LITOC(]R”).

Proof. Let 1 < p'< oco. We set f = f1 + f2, where f1 = fXp(s2r) and

Jfo= fXB(z,2r)'
Estimate for M fi: by the boundedness of maximal operator M on Lz(R™)
(see [20]) we get

1M fillLys) < HMflHLﬁ(Rn)1§7|!f1HLﬁ(Rn) = |l Ly(Bx2r))-



We obtain

rP supt P _
sup 1Nl 2y(B.))

()

> 1P || fllLy(Bx2r) sup P 2 N fllyBa2r)
T

by using the monotonicity of the functions || f||z (B, and tP with respect to
t. Therefore we have

IM filloyB) re Stliptf% 1 F L s(B.0)- (6)

FEstimate for M fy: Let y be an arbitrary point in B. If B(y, t)N(B(x,2r)) # 0,
thent > r. If z € B(y,t)N(B(z,2r)), thent > |y—z| > |z—z|—|z—y| > 2r—r =r.

On the other hand, B(y,t)N(B(z,2r)) C B(x,2t). If z € B(y,t) N (B(z,2r)),
then we obtain |z — z| < |y — z| + |z —y| < t +r < 2t.

Thus

1
M fo(y :sup/ f(2)|dz
) =530 5y, 1) B(y,tm(B(mr))' =

1
§sup/ f(z)|dz
t>r |B( ya )| 932t| )l

<sup ———— z)|dz

t>r | B( y72t | / a:2t)

= sup ——— dz.
o |B(y, t)] B(z,t)| )l

From Lemma 2 for all y € B we get

1 Dl o
M su t P; (B(z
f2( ) t>213" ‘B(y, t)| ||f||Lp(B( )

Ssupt™ P (|1l (B
t>r
Therefore we get
1M follpym) S lxe iz, supt™ P FllLyBaa)
Sr# supt™ P || fll LB
t>r
If p=1, then for any ball B = B(z,r) it is clear that

1M fllw L) < ||Mf1¥5%LT(B) + 1M follwr, ()



From the continuity of the operator M : L3(R") — W Lz(R"™) we get

IM fillwe,s) S il
Therefore by (7) we get the inequality (4).

Secondly, in the following theorem we prove the boundedness of the maximal
operator M on the total mixed Morrey spaces.

Theorem 2. 1. If f € LT/\#(R"), 0<A<nand 0 < u < n, then Mf €

Wiz, (R") and

1M fllwe-

LA

< Criapllfllzy, (8)

where Cy ), does not depend on f.
2. If f € Lpapu(R"), 1 <P <00, 0 <A< nand0 < p < n, then
Mf e Lﬁ’)\ﬂu(Rn) and

IMfllLyn, < Coapllflizss,. 9)

where Cj, 5, depends only on p,\,p and n.

Proof. Let p= (1,1,...,1). From the inequality (4) we have

IM fllweg, , = xeﬂzg%o[th_k L/t M fllw (B (e.)
Y _
Sxe£g§>o[t]1 [1/t]5 " sup 7 "Nl (Bm)
Y _ A —
SWllzy,, sup [l [0 ¢ supr " [r]y [1/7] "
T xeR™ >0 T>t
=flle;,, sup [T [1/¢5 7" sup [] T /7]
T zeR™ >0 T>t
~ A—n n—p __ —n+u
~ | fllr,, Sup [Tl /7 = e, sup 7
— 1fllzs,

which implies that the operator M is bounded from Lg, (R") to WLz, (R").
If 1 < < o0, then from the inequality (3) we have

A “
IMfllyy, = sup [t 7 [L/U7 1MLy By
zeR™,t>0

_A 2 n n
S osup [ty T/t tr sup 7P ([ fl[ LB,
z€R™ >0 Tl>22éf



_2A Fa— o A _K
S llzsn,, _Sup [t], " [1/t]{ t7 supT— P [7]{ [1/7], ©
FASINGN

>0 T>t
n—XA p—n A—n n—p
= fllLga, sup  [ty" [1/ty " sup [7], 7 [1/7];"
zeR™ >0 T>t
A—n n—p n—p
R fllLga, sup 7™ (/77 =l sup 7777
T>1 T>1
= ||f||L;7,>\,H

which implies that the operator M is bounded on Ly ,(R").

If we take A = p or = 0 in Theorem 2, then we get the following results.

Corollary 6. [20] 1. If f € Ly ,(R") and 0 < X\ < n, then Mf € WLy, (R")
and

IMfllwe;, < Ciallfllzy,

A —

where C ) does not depend on f.
2. If fe Lpa(R"), 1 <p< oo and 0 < X <n, then Mf € Ly \(R") and

HMfHLﬁ,,\ < Cﬁ,)\ ”fHLﬁ,w
where Cy ) depends only on p, A and n.
Corollary 7. 1. If f € Ly ,(R") and 0 < A\ < n, then Mf € WL; ,(R") and

- < -
HMf”WLiA = CL)\ Hf”LT,A’

where Cy ) does not depend on f.
2. If f e E@A(R”), l<p<ooand 0< A<n, then Mf € E@A(R”) and

IMflz,, <Caxlfllz,,

where Cy » depends only on p, X and n.

Definition 3. The space BMO(R"™) is defined as the set of all locally integrable
functions f with finite norm

Il = swp  [Bla,o)"! /B ) = oy <o
z,t

z€R™ >0

where fB(:B,t) = |B(.’E, t)|_1 fB(x,t) f(y)d%g()



Theorem 3. [17, Lemma 1] If b € BMO(R"), then for any q € (0,1), there
exists a positive constant C' such that

M (Myf) () < ClJpll M () (10)
for every x € R™ and for all f € LL (R™).
Finally, we give the following theorem, which is one of our main results.

Theorem 4. Let1 < p<o00,0 <A< nand0 < p <n. The following assertions
are equivalent:

(i) be BMO(R™).
(i1) The operator My is bounded on Ly ,,(R"™).

Proof. (i) = (ii). Assume b € BMO(R"). Combining Theorems 2 and 3, we
obtain
IMyfllLsy, SIME(Mof)llLs,,
S BIIM? Fllzgs, S UBINM Fllzz, S 01Nl

(i1) = (i). Suppose M is bounded on Ly ,,(R"™). Let B = B(z,r) be a fixed
ball. We consider f = x,. It is easy to compute that

_A y
IXBllLa, = sup [t 7 [/t IXe lLyBw)
yER™ >0
_A ® 1
= sup [t]y " [1/t){ |B(y,t) N B[P
yeR™ >0
5 1
= sup [t]y " [1/i]{ |B(y,t)|?
B(y,t)CB
n _2A I
=re ] T/ (11)

On the other hand, since

1
My(xB)(x) 2 \B|/ |b(z) — bpldz for all x € B,
B

we get,

23
1Mo (xB) Ly, = S(ur;)[] "/ 1Mo () | Ly B(3.0))
Yy

=3
/7]y |B|/ |b(z) — bpld=. (12)
131
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From the assumption

1Mo(xB)ll L5, S IXBIE 0

by (11) and (12), we find that
! / 1b(=) — bgldz < 1
il — bpldz < 1.
1Bl J5

If we take A = p or 4 = 0 in Theorem 4, then we get the following results.

Corollary 8. Let 1 < p < o0 and 0 < X < n. The following assertions are
equivalent:

(i) be BMO(R™).

(¢4) The operator My is bounded on Lz x(R™).

Corollary 9. Let 1 < p < o0 and 0 < X < n. The following assertions are
equivalent:

(i) be BMO(R™). N

(i1) The operator My is bounded on Lz \(R™).

Remark 3. Note that in the case = (p,...,p) Theorems 2 and j were proved
in [13, Theorems 1, 3].

4. Ly, ,-boundedness of the commutator of maximal operator
[b, M]

In this section we find necessary and sufficient conditions for the boundedness
of the commutator of maximal operator [b, M] on the total mixed Morrey spaces
L u(R™).

Let b be a function b defined on R™. We denote

b (z) = {o : %f b(z) > 0
|b(x)], if b(x) <0

and bT(x) := |b(x)| — b~ (x). Tt is clear that b*(z) — b~ (x) = b(x).

The following relations hold between [b, M] and M} :

Let b be any non-negative locally integrable function. Then for all f €
L¢(R™) and x € R" the inequality

|0, M]f ()| = |b(2)M f(z) — M(bf)(x)|

= [M(b(z)f)(x) = M(bf)(z)] < M(|b(z) = blf)(x) = My f(x)
132



holds.
If b is any locally integrable function on R™, then

b, M]f(z)] < Myf(z) +2b7 (x) Mf(z), weR" (13)

holds for all f € LI°¢(R™) (see, for example [13, 28]).
Let B = B(x,r) be a fixed ball. Denote by Mpf the local maximal function
of f:

1
Mpf(x) = su
f( ) B’Sa::g’CB ‘B/‘

/ F@)ldy, = € R™.
B/

Applying Theorem 4, we obtain the following result, which is another of our
main results.

Theorem 5. Let 1 < p< o0, 0 < A<nand 0 < u <n. Assume that b is a
real-valued locally integrable function on R™. Then the following assertions are
equivalent:

(1) be BMO(R"™) such that b~ € Loo(R™).
(i1) The operator [b, M] is bounded on Ly ,(R™).

(7i1) There exists a constant C' > 0 such that

[(b— Mp(b)) x8llL,
B IxBllLss,

A< (. (14)

Proof. (i) = (ii). Assume that b € BMO(R"). Combining Theorems 2 and
4, and inequality (13), we obtain

116s MIfl| s, < IMpf +26" MfL,

DA, 1 DA,

S Mo fllzgn, + 107 o 1M flz;

DA, 1 Dy, b

S (Il + 167 zoo ) 1F 1|z 5,.-

(i) = (i). Assume that [b, M] is bounded on L ,(R™).
Since
M(bxs)xs = Mp(b) and M(xB)xB = XB;

we get
(b — Mp(b)) x5 =bxs — Mp(b) xB = bM(x5) — M (bxs) = [b, M]xB.

Then
”(b - MB(b)) XB|’LI7,)\7#(1]R§§ = ”[b, M]XBHL;?,A,H(R”)'



Therefore from Lemma 2 and equation (11) we find

1 a1
/wﬁmwgm“wwamm
Bl /s

1 A
< |BI# 17 [1/r]

7 (1]
SR

=

=3
r ”bXB - MB(b)HLT;’)\yM(Rn)

s
RIS

ST 16, M]xBl L, &)
1 P B, ~ 1.
We set
E:={xeB:bx)<bg}, F:={xe€B:bx)>bp}
Since

Lw@—@w—ﬁww—@w,

Considering the inequality b(x) < bp < Mp(b), z € E, we find

1 2
S T .

2/ 2
< = [ b= Mp)| < — [ |b—Ms®) 1.
ARG N AC]

Consequently, b € BMO(R™).
To show that b~ € Lo (R™), note that Mp(b) > |b|. Hence

0<b™ = b — b+ < Mp(b) —b" + b~ = Mg(b) — b.

Thus
(b7) <g

and by the Lebesgue differentiation theorem (Lemma 3) we get that

b~ (z) <c forae. xzeR"

If we take A = p or pr = 0 in Theorem 5, then we get the following results.

Corollary 10. Let 1 < p < o0 and 0 < XA < n. Assume that b is a real-valued
locally integrable function in R™. Then the following assertions are equivalent:
(1) b€ BMO(R"™) such that b~ € Loo(R™).
(i1) The operator [b, M] is bounded on Lz x(R").
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Corollary 11. Let 1 < p< o0 and 0 < XA < n. Assume that b is a real-valued
locally integrable function in R™. Then the following assertions are equivalent:
(1) b€ BMO(R"™) such that b~ € Loo(R™).
(13) The operator [b, M| is bounded on Eﬁ,A(R”).

Remark 4. Note that in the case p = (p,...,p) Theorem 5 was proven [13,
Theorem 4.

5. Conclusions

In this paper we introduce the total mixed Morrey spaces Ly ,(R"™). These
spaces generalize the mixed Lebesgue spaces so that L;oo(R") = Lz(R"), the
mixed Morrey spaces so that Lz z(R") = Lzx(R") and the modified mixed

Morrey spaces so that Ly o(R") = Lz (R"™). We give basic properties of the
spaces L ,,(R™) and study some embeddings into the Morrey space Ly ,(R").
We obtain necessary and sufficient conditions for the boundedness of the max-
imal commutator operator M, and commutator of maximal operator [b, M] on
L . (R™). Using the boundedness results we obtain some new characterizations
for certain subclasses of BMO(R").
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