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Abstract. This work examines the Grundy chromatic number (First-Fit chromatic num-
ber) of comb product graphs constructed from standard graph classes such as paths, cy-
cles, and complete graphs. Exact values are derived for combinations including P, o Py,
P,o0K,, KioK/, CroC,, and C, o P,. The results highlight how base graph interactions
impact greedy coloring strategies.
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1. Introduction

Graph coloring is a core area in graph theory due to its theoretical richness
and practical applications in diverse domains such as job scheduling, register allo-
cation in compilers, channel assignment, and resource management in distributed
networks [11, 9, 8]. In particular, vertex coloring, which involves assigning colors
to vertices such that no two adjacent vertices receive the same color, remains a
classical and well-studied problem.

Among the many variants of vertex coloring, the Grundy chromatic number
(or First-Fit chromatic number), denoted I'(G) for a graph G, plays a central
role in understanding the worst-case behavior of greedy coloring algorithms. The
First-Fit algorithm colors vertices in a specified order, assigning each vertex the
smallest positive integer not used by its colored neighbors. The Grundy chromatic
number is the maximum number of colors that the First-Fit algorithm may use
over all possible orderings of the vertices [13, 12, 3].

Unlike the chromatic number x(G), which minimizes the number of colors
needed, the Grundy number captures the worst-case scenario in online coloring
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settings. The study of Grundy numbers has been extended to several graph
families and operations, such as Cartesian products [4], lexicographic products
[10], and total graphs [7]. However, relatively little attention has been paid to the
behavior of Grundy numbers in the context of comb product graphs, also known
as rooted product graphs.

The comb product, originally defined by Godsil and McKay [6], constructs a
new graph G o H by taking one copy of a rooted graph H for each vertex v of
a base graph G, and identifying the root of each copy with the corresponding
vertex of G. This operation has proven valuable in exploring the structural prop-
erties of complex graph constructions [5]. Prior studies have focused primarily on
chromatic and equitable coloring properties of such graphs [2], particularly when
G and H are classical graphs like paths, cycles, or complete graphs.

In this paper, we aim to extend the investigation of Grundy chromatic num-
bers to comb product graphs of the form P, o Py, P, o K, K; 0 K/, Cy o Cps, and
C, o P;. We seek to determine exact values or bounds for I'(G o H) in these set-
tings and to identify how the structure of G and H influences the greedy coloring
outcome.

Our motivation stems from recent work by Barani and Venkatachalam [2], who
studied equitable colorings of comb product graphs but left open the question of
its behavior under greedy strategies. By analyzing the interplay between local
density (as induced by H) and global connectivity (as provided by G), we uncover
new insights into the extremal behavior of Grundy numbers in hierarchical graph
constructions.

2. Preliminaries

Let G = (V, E) be a finite, simple, undirected graph. A proper coloring of
G is an assignment of colors to vertices such that no two adjacent vertices share
the same color. The chromatic number x(G) is the minimum number of colors
needed for a proper coloring.

The Grundy chromatic number I'(G) is defined as the largest number of
colors that can appear when the First-Fit coloring algorithm is applied to G
over all permutations of its vertex set [13]. Formally, for a vertex ordering
m = (v1,v2,...,0,), the First-Fit algorithm assigns to v; the least positive in-
teger not already used by its neighbors that occur earlier in the ordering. The
maximum number of colors that can be used over all such orderings is T'(G).

Some known results [12, 12, 11]for classical graphs include:

e I'(P,) =3 forn > 4.

e I'(Cy,) =3 for n > 4.
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o I'(K,) =n.

We now define the comb product formally. Let G be a graph with vertex
set V(G) = {v1,v2,...,v,}, and let H be a graph with a distinguished root
vertex r. The comb product G o H is constructed by taking n disjoint copies of
H, say Hy, Ho,..., H,, and identifying the root of H; with the vertex v; of G.
The resulting graph inherits the structure of G at the root vertices, with local
neighborhoods expanded by the structure of H.

Comb product graphs introduce an intricate balance between global graph
structure and localized complexity, making them ideal candidates for studying
coloring parameters like the Grundy number. Prior work has determined chro-
matic [5], equitable [2], and total colorings [1] in similar settings. However, the
behavior of the First-Fit algorithm in such hierarchical constructions is largely
uncharted.

This paper addresses this gap by providing exact values for I'(G o H) where
G,H € {P,,C,, K,} and presenting detailed combinatorial proofs for each case.

The Grundy chromatic number T'(G) of a graph G is the largest number
of colors that can be used by the First-Fit coloring algorithm over all possible
vertex orderings. It represents the worst-case performance of greedy coloring
and is always greater than or equal to the chromatic number x(G). This section
explores the Grundy chromatic number of comb product graphs formed using
paths, cycles, and complete graphs.

Let G be a graph with vertex set V(G) = {v1,v2,...,v,}, and let H be a
rooted graph with a fixed root r € V(H). The comb product G o H is constructed
by taking one copy of H for each vertex v; € GG, and identifying the root r of the
i-th copy of H with v;.

3. Main Results

Theorem 1. For all integers q,q' > 4, the Grundy chromatic number of the comb
product Py o Py is given by
T(P,0 Py) = 3. (1)
Proof. Let P, be the base path with vertex set
V(FPy) = {vi,v2,...,94} and E(P;) = {vvit1|1<i<qg—1}.

Attach to each vertex v; € V(P,) a copy of Py such that v; acts as the root
(first vertex) of the attached path. Denote the additional vertices in the i-th
attached path as

{ui,j ‘ 2<35< q'}, with Ui 1 1= Vs
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Then the vertex set of the comb product is

V(Pyo Py) =] ({vi} Ufuij 2 < < q}). (2)

i=1

The edge set consists of:

e the base path edges: v;v;4q for 1 <i¢<qg—1,

e the attachment edges: vju;2 for 1 <1 <g,

e the internal path edges of each attached Py: w;ju;j41 for 2 < j < ¢'.

Now, we define a greedy First-Fit coloring function f: V — N.
Color vertices in each copy of Py (excluding root) in the order
Ui g Ui g'—1, - - -, Ui 2 USINgG the pattern:

1 ifj=0 (mod 3),
fluij) =42 ifj=1 (mod 3),
3 ifj=2 (mod 3).

Then, color the root v; after all its neighbors using the lowest available color.
Since each v; is connected to at most 3 differently colored neighbors (in path and
in its copy), it will get a color from {1,2,3}.

We now show that the maximum number of colors used under this ordering is
exactly 3. The vertices u; ; require at most 3 colors in the greedy sequence since
each has at most 2 neighbors (being part of a path). Similarly, each v; connects
to:

e Two vertices from the base path (v;_1,vi+1),
e One vertex u; 2 from the attached path.

Thus, in the worst-case ordering (where all neighbors are colored first), v; sees at
most 3 distinct colors, forcing I'(Py o Pyr) < 3.
To show I' > 3, we consider a worst-case ordering where u; ; are colored before
v;, and ¢q,q¢ > 4 ensures such a configuration exists with 3 colors appearing on
the neighbors of v;.
Therefore,
['(PyoPy)=3.
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Theorem 2. Forq > 2, t > 2, the Grundy chromatic number of the comb product
Pq o Kt 18:
I'(PyoK) =t+1. (3)
Proof.
Let P, be the base path graph with vertex set and edge set defined as

V(Pq):{vl,vg,...,vq}v E(Pq) :{Uivi+1 | 1 §i<q}.

Let K; denote a complete graph, where each vertex v; € V(P;) serves as the
root of a copy of K; by identifying v; = u; 1. The remaining vertices in the i-th
copy are denoted by u;2,...,u;.

Thus, the vertex set of the comb product P, o K; is given by:

V(PyoKy) = ({vi} U{uiy [ 2 <5 <t}). (4)
=1

Each vertex v; is adjacent to:
e ¢ — 1 vertices from the i-th copy of K;, namely u; 2, ..., u;¢;

e Up to two neighboring vertices in the base path F,, specifically v;—1 and
vi+1, if they exist.

We define a First-Fit (greedy) coloring algorithm that assigns colors based on
a carefully chosen vertex ordering.

e For each ¢ = 1 to g, first color all vertices of K; except the root v; (i.e.,
Uj, 25+ ui,t).

e Then, color the root v;.

Since K; is complete, the ¢—1 non-root vertices u; 2, . .., u;; are mutually adjacent
and require ¢ — 1 distinct colors. The root v; is adjacent to all these vertices and
may additionally be adjacent to up to two previously colored path neighbors (e.g.,
vi—1 and/or vi41).

Thus, v; may be adjacent to up to ¢ different colors when it’s its turn to be
colored.

fluig)=j—1, forj=23,...t,
flu)=t+1.

In the worst-case First-Fit ordering, the root vertex v; may be adjacent to:
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e ¢ — 1 distinct colors from its own K; copy,
e up to 2 additional colors from adjacent base vertices.

Therefore, the maximum color needed is t+1. Since this coloring is achievable
under a specific ordering, and since no vertex has degree more than t + 1, the
Grundy number is:

I'(PjoKy) =t+1.

Theorem 3. For t,t' > 2, the Grundy chromatic number of the comb product
Kio Ky is:
I'(KioKy)=t-t. (5)

Proof. Let K; be the base complete graph with vertex set
V(Kt> = {’Ul, V2, ... ,’Ut}.

For each vertex v; € V(K;), attach a copy of the complete graph Ky such
that v; serves as the root. Denote the vertex set of the i-th copy as

Vi=A{u;; |1<j<t?}, withu:=uv;.

Then the total vertex set of the comb product K; o Ky is

t

t
V(Kio Ky) = U Vi = U{u@',l,um, U ) (6)
i=1 i=1

Each set V; induces a complete subgraph isomorphic to Ky. Additionally, the
root vertices {u1,1,u21,...,u,1 }—which are the original vertices of K;—form a
complete graph among themselves.

We define a First-Fit coloring based on a specific vertex ordering:

e For each i = 1 to t, color all the non-root vertices of the i-th copy of Ky,

i.e., {ULQ, e ,uin/}.
e Then, color the root vertices {ui 1,ug1,...,us 1} last, in any order.

Since each Ky is complete, its ¢’ vertices need ¢’ distinct colors under any ordering.
So, in each copy, the non-root vertices will receive colors 1 through ¢ — 1, and
the root u; ; can receive color ¢'.

However, since the root vertices form a complete graph K;, and each root
w1 is already adjacent to ¢ — 1 colored vertices in its own copy, placing the root

vertices at the end forces the final root to be adjacent to:
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e (t — 1) already colored root vertices (from Kj),
e (t' — 1) vertices in its own Ky copy.

Thus, the last root vertex is adjacent to (¢t — 1) -t/ + (¢’ — 1) colored vertices in
the worst-case. This totals to ¢ -t — 1, requiring ¢ - ¢ colors.

Since the First-Fit coloring algorithm assigns the smallest available color not
used by neighbors, and the maximum degree any vertex can have is t -t — 1, the
worst-case coloring requires exactly ¢ - t' colors.

Hence, we conclude:

I'(KioKy)=t-t.

Theorem 4. For cycles C, and C,» with r,rv’" > 4, the Grundy chromatic number
of the comb product C, o Cyr is:

[(CroCu) =4. (7)
Proof. Let C,. be the base cycle with vertex set
V(Cy) = {v1,v2,...,v,} and edge set E(Cy) = {vjviy1 |1 <i<r}U{vv}.
To each vertex v; € V(C,), attach a copy of the cycle C,s, with vertex set
Vi={u;j|1<j<r'}, whereu;;:=v; (the root).

The total vertex set of the comb product C,. o C, is then

r

V(CroCu) = U Vi= U{Uz’,hum, .. -,Uz’,r’}- (8)
i=1

=1

FEach subgraph V; induces a cycle isomorphic to C)/, and the root vertices
{ui1,u21,...,ur1}, which correspond to V(C,), form the base cycle C,.
We apply a First-Fit (greedy) coloring with a specific vertex ordering:

e For each i = 1 to r, color the vertices u;2,...,u;, first (i.e., all of Cp
except the root).

e Then, color the root vertex u;1 = v;.

Each C, with ' > 4 is a cycle, requiring at most 3 colors under greedy
coloring. So, the vertices u; 2, ..., u;, will be colored using at most 3 colors.

When we reach the root vertex v;, it is adjacent to:
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e Two neighbors in the base cycle C,: v;—1 and v;41,
e Two neighbors in its own C}s copy: u;2 and u; .

In the worst-case vertex ordering, all these neighbors may have distinct colors.
Therefore, v; could be adjacent to 3 already-used colors.

Under the First-Fit strategy, v; must receive a color not used by any of its
neighbors. If its 3 neighbors (from attached cycle) and the two adjacent base-
cycle vertices together cover 3 distinct colors, then v; will need a 4th color.

Hence, the maximum number of colors required in this worst-case ordering is:

F(Cr o Cr’) =4.

Theorem 5. For r > 3 and q > 2, the Grundy chromatic number of the comb
product C. o Py is:
I'(C, o Py) = 4. (9)

Proof. Let C,. be the base cycle with vertex set
V(Cy) ={v1,v2,...,v,} andedgeset E(C,)={vivit1]|1<i<r}U{vv}.
To each vertex v; € V(C,), attach a copy of the path P,, denoted by
Vi=A{ui; |1 <5 <q}, withu;1:=v;.
Each attached path P, has edge set
E; ={uijuij | 1<) <q}

The total vertex set of the comb product C, o P, is

r

V(C,oPy)) = U Vi = U{ui,l,ui,z, e Uig) (10)
i=1

i=1

where each u; 1 corresponds to a vertex of the base cycle and serves as the root
of the attached path.
We apply the First-Fit coloring algorithm with the following vertex ordering;:

e For each i =1 to r, color the path vertices u; ¢, u; g—1,- .., u; 2 first.

e Then, color the root vertex u;1 = v;.
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Each P, (with ¢ > 4) has Grundy number at most 3, so the path vertices can
be colored using colors from {1, 2, 3}.
When coloring the root v; = u; 1, it is adjacent to:

e Two base-cycle neighbors: v;_1,vi41,
e One path neighbor: w; 2.

In a worst-case ordering, all three neighbors may be assigned different colors
from {1,2,3}.

Since each root vertex v; (appearing last in the ordering) may be adjacent to
three differently colored vertices, the First-Fit algorithm will require a new color,
namely color 4.

Thus, the maximum number of colors used in this greedy coloring is:

I'(Cy o Py) = 4.

4. Conclusion

In this paper, we analyzed the Grundy chromatic number of several comb
product graphs, combining paths, cycles, and complete graphs. For each graph
pair, we derived exact values of the Grundy number by considering worst-case
vertex orderings and leveraging structural properties. The behavior of Grundy
numbers in comb products involving more complex graphs such as wheel, helm,
or double star graphs. Comparative analysis of Grundy numbers under other
graph products (e.g., lexicographic, tensor). Algorithmic approaches for comput-
ing Grundy numbers efficiently in comb structures. Such studies could deepen
our understanding of online and greedy coloring processes in graph theory and
combinatorial optimization.
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