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Sufficient conditions for weighted integrability of
the κ-Hankel transform

A. Khadari

Abstract. In this paper, we establish new sufficient conditions for the weighted integra-
bility of the κ-Hankel transform. Our results extend and refine earlier Titchmarsh-type
theorems by removing restrictive assumptions on the modulus of smoothness, such as the
Bary and ∆2 conditions that appeared in recent related works. Using the κ-Hankel trans-
lation operator and higher-order moduli of smoothness associated with this translation,
we derive weighted Lr

κ(R)-integrability criteria for the κ-Hankel transform of functions
belonging to Lp

κ(R) and Sobolev-type spaces W s
p,κ. The obtained results generalize sev-

eral known integrability theorems for Fourier, Hankel, Jacobi–Dunkl, and Hankel–Clifford
transforms. As applications, we present integrability results under power-type and log-
arithmic smoothness assumptions, as well as Boas-type uniqueness theorems. These
findings contribute to the harmonic analysis of deformed integral transforms and provide
tools applicable to problems with underlying symmetry structures.

Key Words and Phrases: κ-Hankel transform, κ-Hankel translation operator, Gener-
alized Lipschitz spaces, the modulus of smoothness
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1. Introduction

Signal processing, image processing, and radar all extensively use the Fourier
transform and its related integral transforms in the field of harmonic analysis.
These mathematical tools enable the decomposition of complex signals into their
constituent frequencies, facilitating the analysis and interpretation of data across
various applications. As a result, researchers and engineers can enhance system
performance and develop innovative solutions in communication and imaging
technologies. The modulus of smoothness is used to measure the smoothness of a
function. In practical algorithm applications, finite differences are used to replace
derivatives. These techniques not only offer commentary on the behavior of
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functions but also aid in optimizing computational efficiency. This optimization
is crucial in scenarios where processing speed and accuracy are paramount, such
as in real-time signal processing and machine learning algorithms. By using
these methods, professionals can get more accurate results while using fewer
computer resources. This will lead to improvements in technology and data
analysis. By leveraging such approaches, practitioners can improve the accuracy
of numerical simulations and enhance their understanding of dynamic systems.

Let’s consider a function f : R → C that is integrable in the Lebesgue sense
over the real line, denoted as f ∈ L1(R). We define the Fourier transform of f
by:

f̂(x) = (2π)−1/2

∫
R
f(t)e−itxdt, x ∈ R.

If, in addition, f̂ ∈ L1(R) and f ∈ C(R) (f is continuous on R), then the
inversion formula

f(t) = (2π)−1/2

∫
R
f̂(x)eitxdx,

takes place for all t ∈ R (see [3, Ch. 5, p. 192]). In this case, we have by the
Riemann–Lebesgue lemma limx→∞ f̂(x) = 0, that is, f ∈ C0(R).

In the case 1 < p ≤ 2, the Fourier transform of a function f ∈ Lp(R) is defined
as a limit of (2π)−1/2

∫ b
a f(x)e−itxdx in the Lq(R) norm sense, where 1

p + 1
q = 1

and a → −∞, b → +∞.
In particular, f ∈ Lq(R) and the following Hausdorff-Young inequality:

∥f̂∥q ≤ C∥f∥p = C

(∫
R
∥f(t)∥pdt

)1/p

, f ∈ Lp(R), 1 < p ≤ 2, (1)

holds. For p = 2, the inequality in (1) is substituted by the Plancherel
equality. For more about these results, refer to [12, Ch. III and IV] or [3, Ch. 5].

For f ∈ Lp(R), 1 ≤ p < ∞, we consider the modulus of smoothness of order
k ∈ N

ωk(t, δ)p = sup
0≤h≤δ

||∆k
hf∥p, ∆k

hf(x) =
k∑

j=0

(−1)j
(
k

j

)
f(x+ (k − 2j)h/2).

If ω1(f, δ)p = O(δα), 0 < α ≤ 1, then we write f ∈ Lip(α, p). If f ∈ C0(R) or f
is uniformly continuous and bounded on R (f ∈ BUC(R)), then, by definition

ωk(f, δ) = ωk(f, δ)∞ = sup
0≤h≤δ

sup
x∈R

|∆k
hf(x)|.
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The following result of Titchmarsh is well known (see [2, Ch. 4, Theorem 84]).
Let 1 < p ≤ 2, 0 < α ≤ 1, and f ∈ Lip(α, p). Then f̂(t) ∈ Lβ(R) for all β
satisfying the inequality

p

p+ ap− 1
< β ≤ q =

p

p− 1
.

We denote that a non-negative measurable function λ(t) ∈ L1
loc(R+) belongs to

the class Aγ, γ ≥ 1, if there exists C(γ) ≥ 1 such that(∫ 2i+1

2i
λγ(t)dt

)1/γ

≤ C(γ)2i(1−γ)/γ

∫ 2i

2i−1

λ(t)dt, i ∈ Z. (2)

According to the Hölder inequality, it is evident that the set Aγ1 is a subset of
Aγ2 when 1 ≤ γ2 < γ1. The strictness of this embedding has been demonstrated
in [12]. It is evident that a function λ(t) ≥ 0 is measurable and possesses the
attribute

sup{λ(t) : 2i ≤ t < 2i+1} ≤ C inf{λ(t) : 2i−1 ≤ t < 2i}, i ∈ Z

is contained in all classes Aγ , γ ≥ 1.

Gogoladze and Meskhi [9] presented an analog to formula (2) specifically for
sequences. The formula (2) was proposed by Móricz [14] who demonstrated the
following outcome: Given 1 < p ≤ 2 and f ∈ Lp(R), if the equation 1

p + 1
q = 1

holds, where 0 < r < q, and λ belongs to the set Ap/(p−rp+r), then∫
|t|≥2

λ(t)|f̂(t)|rdt ≤
∫ ∞

1
λ(t)t−r/qωr(f, π/t)pdt.

A more general result and proof of its sharpness may be found in [12].

The main purpose of this article is to obtain a variant of the above proposition
by the use of the modulus of smoothness ωm(f, δ)p,κ = sup0≤h≤δ ||∆m

h,κf ||Lp
κ(R).

This result generalize a previous one by A. Elgargati, M El Loualid and R Daher
see[7]
A recent similar result obtained by S. Volosivets [24] considering a majorant of
the modulus of smoothness ω with additional condition on ωq, that is most be
in B ∩∆2 where B is the Bary class and ∆2 -condition which is ω(2x) ≤ Cω(x)
with f ∈ Hm,ω

κ,p,∗(R) defined by the modulud of smoothness ω∗
m(f, δ)κ,p = ∥∆m

h,κf+

∆m
−h,κf∥, In this paper and based on the article [26], we use the Lp

κ(R) and the
Sobolev spaces W s

p,κ instead, see [24] for more details. Similar results are already
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obtained for Jacobi-Dunkl transform, Bessel transform, first and second Hankel-
Clifford transform, see [8, 27, 29].

The subsequent sections of this work are structured as follows:

• In the second section we give the definition and properties of the κ-Hankel
transform.

• In the third section, we state and prove several valuable auxiliary results,
particularly the estimations of the κ-Hankel kernel.

• In the fourth section we state and prove the main result:

Theorem 1. Let 1 < p ≤ 2, 1/p+ 1/q = 1, f ∈ Lp
κ(R), m ∈ N. If

λ ∈ Ap/(p−pr+r),k = Aq/(q−r),k ,

for some r ∈ (0, q), λ ∈ L
q/(q−r)
k [−1, 1] and the integral∫ ∞

1
λ(x)x−2κr/qωr

m(f,x
−1)p,kdµκ(x),

converges, then λ(x)|Fκ(f)(x)|r ∈ L1
k(R).

and

Theorem 2. Let 1 < p ≤ 2, 1/p + 1/q = 1, s ∈ N, m > 0 and f ∈ W s
p,κ.

If λ ∈ Aq/(q−r),k for some 0 < r < q, λ ∈ L
q/(q−r)
k ([−1, 1]) and the integral∫ ∞

1
λ(x)x−2rκ/q−2rsωr

m(Ls
κf, x

−1)p,κdµκ(x),

converges, then λ(x)|Fκ(f)(x)|r ∈ L1
k(R).

Finally, we conclude some special cases, and one of them is about the inte-
grability of Fκ(f)

2. κ-Hankel transform and generalized translations

In this section, we present the fundamental tools required for the κ-Hankel
transform Fκ. To obtain additional information, we direct the reader to the
references [20, 21].



70 A. Khadari

For κ ≥ 1/2 and 1 ≤ p ≤ ∞, let Lp
κ(R) be the space of measurable functions

f on R such that

∥f∥Lp
κ(R) =

(∫
R
|f(x)|pdµκ(x)

) 1
p

< ∞, for 1 ≤ p < ∞,

||f ||L∞
k (R) = ess sup

x∈R
|f | < ∞,

where

dµκ(x) =
1

2Γ(2κ)
|x|2κ−1dx.

For p = 2, we provide this space with the scalar product

⟨f, g⟩L2
k(R)

=

∫
R
f(x)g(x)dµκ(x).

The κ-Hankel transform of f ∈ L1
k(R) is defined by

Fκ(f)(λ) = cκ

∫
R
f(x)Bκ(λ, x)dµκ(x), λ ∈ R

where

cκ :=

(∫
R
e−|x|dµκ(x)

)−1

= 2−1Γ(2k)−1,

and Bκ(λ, x) is the κ-Hankel kernel given by

Bκ(λ, x) = Bκ(λx) = j2κ−1

(
2
√
|λ.x|

)
− λ.x

2κ(2κ+ 1)
j2k+1

(
2
√
|λ.x|

)
.

Here

jα(u) := Γ(α+ 1)
(u
2

)−α
Jα(u) =

∞∑
m=0

(−1)m

m!Γ(α+m+ 1)

(u
2

)2m
,

denotes the normalized Bessel function of index α.
Consider the Dunkl Laplacian, defined by

Λk =
d2

dx2
+

2k

x

d

dx
− k

x2
(1− S),

where Sf(x) = f(−x). The kernel Bκ satisfies the following differential-difference
equation:

|x|ΛkBκ(λ, x) = −|λ|Bκ(λ, x). (3)
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We point out that

Bκ(0, y) = 1, |Bκ(x, y)| ≤ 1,

for all x, y ∈ R. In particular, we deduce that for all f in L1
k(R),

∥Fκ(f)∥L∞
k (R) ≤ cκ∥f∥L1

k(R)
, (4)

The observation is that Fκ serves as a natural extension of the usual Hankel
transform.

Beven
κ (x, y) = 1

2(Bκ(x, y) + Bκ(x,−y)) = j2k−1(2
√

|xy|).

The κ-Hankel transform of an even function on the real line is a specialized form
of the Hankel type transform on R+.

The following statement is a particular case of [20, Theorem 3.39].

Theorem 3. Assume that κ ≥ 1/2.

1. (Plancherel’s theorem) Fκ is an isometric isomorphism on L2
k(R),∫

R
|f(x)|2 dµκ(x) =

∫
R
|Fκ(f)(λ)|2 dµκ(λ). (5)

2. (Parseval’s formula) For all f, g in L2
k(R), we have∫

R
f(x)g(x)dµκ(x) =

∫
R
Fκ(f)(λ)Fκ(g)(λ)dµκ(λ). (6)

3. (Inversion formula) Fκ satisfies

F−1
κ = Fκ.

By using the Plancherel formula (5) and the inequality (4), it can be easily
concluded that for every function f belonging to the space Lp

κ(R) with 1 ≤ p ≤ 2,
the κ-Hanekl transform Fκ(f) also belongs to the space Lq

k(R), where
1
q +

1
p = 1.

||Fκ(f)|||Lq
k(R)

≤ c
2−p
p

κ ||f ||Lp
κ(R). (7)

Said in [21] introduced a translation operator on the space Lp
κ(R), 1 ≤ p ≤ ∞,

using the following formula:

τκx f(y) =

∫
R
f(z)dζκx,y(z), x, y ∈ R.
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where

dζκx,y(z) =


Kκ(x, y, z)|z|2κ−1dz, if xy ̸= 0,
dδx(z), if y = 0,
dδy(z), if x = 0,

with an explicit kernel Kκ(x, y, z) supported on(√
|x| −

√
|y|
)2

< |z| <
(√

|x|+
√
|y|
)2

.

For the precise formulation of Kκ(x, y, z), we refer to the paper by Ben Säıd [21].
Here, we present a summary of the findings for the κ-Hankel translation op-

erator as documented in [21].

Proposition 1. Assume that κ ≥ 1/2.

1. For all f ∈ Lp
κ(R), 1 ≤ p ≤ ∞, and for all x, y ∈ R, we have

τκx (f)(y) = τky (f)(x).

2. If f ∈ L2
k(R) and λ, x ∈ R, then

Fκ(τ
κ
x f)(λ) = Bκ(λ, x)Fκ(f)(λ). (8)

3. For all f in L2
k(R), we have

∥τκx f∥L2
k(R)

≤ ∥f∥L2
k(R)

, ∀x ∈ R.

4. For all f ∈ L1
k(R) such that Fκ(f) ∈ L1

k(R), we have

τκx f(y) = cκ

∫
R
Bκ(x, ξ)Bκ(y, ξ)Fκ(f)(ξ)dµκ(ξ).

The explicit formula of the kernel Kκ(x, y, z) implies that the operator τyf is
bounded. To be more exact:

Proposition 2. (See [21]) For all f ∈ Lp
κ(R), 1 ≤ p ≤ ∞, there exists a positive

constant Ak such that

∥τκx f∥Lp
κ(R) ≤ Aκ∥f∥Lp

κ(R), ∀x ∈ R.

Several essential properties of τκx f for f being an even function are established
in [21]. Let Lp

κ,e(R) be the space of even functions in Lp
κ(R).
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Proposition 3. 1. For all f in Lp
k,e(R), 1 ≤ p ≤ ∞, we have

τκx f(y) =

∫ π

0
f(|x|+ |y| − 2

√
|xy| cosϕ){

1 +
sgn(xy)

4k − 1

(
4kcos2ϕ− 1

)}
(sinϕ)4k−2dϕ.

2. For all non-negative f in L1
κ,e(R), we have, for all x ∈ R,

τκx f ≥ 0, τκx f ∈ L1
k(R),

and ∫
R
τκx f(y)dµκ(y) =

∫
R
f(y)dµκ(y).

3. For all f in Lp
κ,e(R), 1 ≤ p ≤ ∞, we have

∥τκx f∥Lp
κ(R) ≤ ∥f∥Lp

κ(R), ∀x ∈ R. (9)

3. Auxiliary propositions and definitions

Denote

Lκ(λ) = |λ|Λκ(λ), (10)

and Wn
p,κ be the Sobolev space constructed by Ln

κ as follows:

Wn
p,κ = {f ∈ Lp

κ(R) : Li
κf ∈ Lp

κ(R), i = 1, ..., n},

where Li
κf = Lκ(Li−1

κ f) and L0
κf = f .

Denote by Φ the set of continuous and increasing on R+ = [0,∞) functions

ω such that ω(0) = 0. If ω ∈ Φ and
∫ δ
0 t−1ω(t)dt = O(ω(δ)), then ω belongs to

the Bary class B; if ω ∈ Φ and δm
∫∞
δ t−m−1ω(t)dt = O(ω(δ)), m > 0, then ω

belongs to the Bary-Stechkin class Bm (see [13]). We say that ω ∈ Φ satisfies the
△2 -condition, if ω(2x) ≤ Cω(x), x ∈ R+.

Let ω ∈ Φ . Let us introduce for m ∈ N, ω ∈ Φ and κ > 1/2 the spaces of
generalized Lipschitz classes :

Hm,ω
p,k (R) = {f ∈ Lp

κ(R) : ||∆m
h,κf ||Lp

κ(R) = O(ω(h)), h > 0},

and

hm,ω
p,k (R) = {f ∈ Hm,ω

p,k (R) : ∥∆m
h,κf(x)∥Lp

κ(R) = o(ω(h)), h → 0+}.
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The spaces H1,ω
p,k (R) and h1,ωp,k (R), are called the Lipschitz class Lip(κ) and

little Lipschitz class lip(κ), respectively. The spaces H2,ω
p,k (R) and h2,ωp,k (R), are

called the Zygmund class Zyg(κ) and little Zygmund class zyg(k), respectively.
Also we consider for ω ∈ Φ, 1 ≤ p < ∞ and m, r ∈ N an analogue of Nikol’skii
space

W rHm,ω
p,k (R) =

{
f ∈ W r

p,κ(R) : Lr
κf ∈ Hm,ω

p,k (R)
}
.

For r = 0 we have by definition W rHm,ω
p,k (R) = Hm,ω

p,k (R). If ω(δ) = δβ, β > 0,

we denote W rHm,ω
p,k (R) as DLip(β, p,m, r).

Let λ(x) be a non-negative measurable function from L1
loc(R+), 1 ≤ γ < ∞,

Z+ = {0, 1, ...}. If there exists C(γ) ≥ 1 such that(∫ 2i+1

2i
λγ(x)dµκ(x)

)1/γ

≤ C(γ)22κi(1−γ)/γ

∫ 2i

2i−1

λ(x)dµκ(x), i ∈ Z,

then λ ∈ Aγ,k . Also we put λ(x) = λ(−x) for all x < 0.

Using the operator τκh we define the generalized difference operator of order
m ∈ N∗ with step h ≥ 0

∆m
h,κf(x) =

m∑
j=0

(−1)j
(
m

j

)
(τκh )f(x),

We consider the modulus of smoothness of order m in Lp
κ(R) related to κ-

Hankel translation

ωm(f, δ)p,k = sup
0≤h≤δ

||∆m
h,κf ||Lp

κ(R).

By 2 we see that ωm(f, δ)p,k is well defined for f ∈ Lp
κ(R).

Lemma 1. Let n ∈ N,1 ≤ p < ∞ and f ∈ Wn
p,κ. Then

Fκ(Ls
κf)(x) = (−1)s|x|sFκ(f)(x),

s = 1, 2, . . . , n a.e. on R.

Proof. Using the formulas 3 and 10.

Lemma 2. Let m ∈ N, s ∈ N, 1 < p ≤ 2, f ∈ W s
p,κ and h > 0. Then

Fκ(∆
m
h,κLs

κf)(x) = (−1)s|x|s(1− Bκ(x, h))
mFκ(f)(x).
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Proof. It is sufficient to study the case s = 0. If f ∈ Lp
κ(R), then ∆m

h,κf
exists due to the inequality (9). On the other hand, by (7) from the equality
limn→∞ ∥f − fn∥Lp

κ(R) = 0, 1 < p ≤ 2, we conclude that

lim
n→∞

∥Fκ(f)−Fκ(fn)∥Lq
k(R)

= 0, 1/p+ 1/q = 1.

Since by (8) Fκ((τ
κ
h )

jf)(λ) = (Bκ(λ, h))
jFκ(f)(λ) a.e. on R for j ∈ Z+ =

{0, 1, . . . }, we obtain

Fκ(∆
m
h,κf)(x) =

m∑
i=0

(−1)j
(
m

j

)
(Bκ(λ, h))

jFκ(f)(x) = (1− Bκ(λ, h))
mFκ(f)(x),

a.e. on R.

in the next of this section and in order to prove that C ̸= 0 in part 1 of
Lemma 6 see [[15], Lemma 1] witch is not clear, we state and prove the following
important results:

Lemma 3. The Bessel function jα have following the integral representation:

jα(ξ) =
Γ(α+ 1)

√
πΓ(α+ 1

2)

∫ 1

−1
(1− t2)α−

1
2 cos(ξt)dt.

Proof. using the integral representation of jα in [19] and the fact that the

function t 7→ (1− t2)α−
1
2 sin(ξt) is odd,

jα(ξ) =
Γ(α+ 1)

√
πΓ(α+ 1

2)

∫ 1

−1
(1− t2)α−

1
2 eiξtdt

=
Γ(α+ 1)

√
πΓ(α+ 1

2)

∫ 1

−1
(1− t2)α−

1
2 (cos(ξt) + i sin(ξt)) dt

=
Γ(α+ 1)

√
πΓ(α+ 1

2)

(∫ 1

−1
(1− t2)α−

1
2 cos(ξt)dt+ i

∫ 1

−1
(1− t2)α−

1
2 sin(ξt)dt

)
=

Γ(α+ 1)
√
πΓ(α+ 1

2)

∫ 1

−1
(1− t2)α−

1
2 cos(ξt)dt.

Lemma 4. The κ-Hankel kernel Bκ(ξ) admit the flowing integral representations,

• if ξ ≤ 0

Bκ(ξ) =
Γ(2κ+ 1)

√
πΓ(2κ+ 1

2)

∫ 1

−1
(1− t2)2κ−

1
2 cos(2

√
|ξ|t)dt,
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• if ξ ≥ 0

Bκ(ξ) =
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1

(
1 +

2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 cos(2t(

√
ξ))dt.

Proof.

• if ξ ≤ 0 then by the formula in [19]

Bκ(ξ) =j2κ

(
2
√

|ξ|
)
,

=
Γ(2κ+ 1)

√
πΓ(2κ+ 1

2)

∫ 1

−1
(1− t2)2κ−

1
2 cos(2

√
|ξ|t)dt.

• if ξ ≥ 0 then by the formula in [19] and the fact that the function t 7→
sin
(
2t(

√
ξ)
) (

1 + 2κt2

2κ−1

) (
1− t2

)2κ− 3
2 is odd,

Bκ(ξ) =2j2κ−1

(
2
√
ξ
)
− j2κ

(
2
√

ξ
)

=
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1
exp

(
2it(

√
ξ)
)(

1 +
2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 dt

=
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1
cos
(
2t(
√
ξ)
)(

1 +
2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 dt+

i
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1
sin
(
2t(
√
ξ)
)(

1 +
2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 dt

=
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1

(
1 +

2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 cos

(
2t(
√
ξ)
)
dt.

Lemma 5. Let F (t) be an even, non-negative and Lebesgue integrable function
on [−1, 1] satisfy the condition

∫ 1
−1 F (t)dt > 0. Then there exists a constant c

such that: ∫ 1

−1
F (t) sin2(rt)dt ≥ c > 0,

for r > 1
2 .

Proof. by the Lemma 3.3 in [17] and the fact that
∫ 1
−1 F (t) sin2(rt)dt =

2
∫ 1
0 F (t) sin2(rt)dt
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Proposition 4. we have Bκ(ξ) ̸= 1 for ξ > 1
2

Proof. Suppose that ξ > 1
2 we have

1−Bκ(ξ) =Bκ(0)−Bκ(ξ)

=
Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1

(
1 +

2κt2

2κ− 1

)(
1− t2

)2κ− 3
2

(
1− cos(2t(

√
ξ))
)
dt

=
2Γ(2κ)

√
πΓ(2κ− 1

2)

2κ− 1

2κ− 1
2

∫ 1

−1

(
1 +

2κt2

2κ− 1

)(
1− t2

)2κ− 3
2 sin2(

√
ξt)dt,

if we put F (t) =
(
1 + 2κt2

2κ−1

) (
1− t2

)2κ− 3
2 and r =

√
ξ then we have

∫ 1
−1 F (t)dt >

0, by the application of Lemma 5 we conclude that

|1−Bκ(ξ)| ≥ c > 0.

Lemma 6 (see [15]). .

1. Let κ > 1/2 and |λx| ≥ 1. Then we obtain the following inequality:

|1−Bκ(λ, x)| ≥ C,

where C is positive constant.

2. Furthermore the behaviour in 0 of the kernel Bκ(λ, x) could be expressed as
follows:

|Bκ(λ, x)− 1|2 = O(|λx|2· ),

3. There exists a positive constant C and η > 0 such that:

|λx| ≤ η =⇒ |Bκ(λ, x)− 1| ≥ C|λx|.

Proof. we refer to the proof of [[15], Lemma 1], except of the problem about
that m = min|λx|∈[1,A] |1 − Bκ(λ, x)| may be equal to 0, by the application of 4
we are sure that m ̸= 0
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4. Weighted integrability of κ-Hankel transform

Theorem 4. Let 1 < p ≤ 2, 1/p+ 1/q = 1, f ∈ Lp
κ(R), m ∈ N. If

λ ∈ Ap/(p−pr+r),k = Aq/(q−r),k ,

for some r ∈ (0, q), λ ∈ L
q/(q−r)
k [−1, 1] and the integral∫ ∞

1
λ(x)x−2κr/qωr

m(f,x
−1)p,kdµκ(x),

converges, then λ(x)|Fκ(f)(x)|r ∈ L1
k(R).

Proof. By the use of the Lemma (2) and Hausdorff-Young type inequality (2)∫
R
|Fκ(f)(x)|q|1− Bκ(x, h)|mqdµκ(x) ≤ C1||∆m

h,κf ||
q
Lp
κ(R)

≤ C1ωm(f, h)p,k.

Let Mi =
{
x ∈ R : 2i−1 ≤ |x| < 2i

}
, i ∈ N and h = 2−i.we have by (6)(3) 1 −

Bκ(x, λ) ̸= 0 for xλ ̸= 0. Since 1 − Bκ(x, h) is continuous on R we obtain the
inequality C2 = min

{
|1− Bκ(x, λ)| : |xλ| ∈ [12 , 1]

}
> 0 and

C2

∫
Mi

|Fκ(f)(x)|qdµκ(x) ≤
∫
Mi

|Fκ(f)(x)|q|1− Bκ(x, 2
−i)|mqdµκ(x)

≤
∫
R
|Fκ(f)(x)|q|1− Bκ(x, 2

−i)|mqdµκ(x) ≤ C1ω
q
m(f, 2−i)p,k.

By the Hölder inequality and the condition λ ∈ Aq/(q−r),k we have for 0 < r < q∫
Mi

λ(x)|Fκ(f)(x)|rdµκ(x)

≤
(∫

Mi

|λ(x)|q/(q−r)dµκ(x)

)1−r/q (∫
Mi

|Fκ(f)(x)|qdµκ(x)

)r/q

≤C3ω
r
m(f, 2−i)p,k2

−2κir/q

∫
Mi−1

λ(x)dµκ(x)

≤C3

∫
Mi−1

λ(x)ωr
m(f, x−1)p,k(1/x)

2κr/qdµκ(x) (11)

=2C3

∫ 2i−1

2i−2

λ(x)ωr
m(f, x−1)p,k(1/x)

2κr/qdµκ(x). (12)

By summing up the inequalities (11) over i ∈ N∗ we find that∫
|x|≥1

λ(x)|Fκ(f)(x)|rdµκ(x) ≤ 2C3

∫ ∞

1/2
λ(x)ωr

m(f, x−1)p,kx
−2κr/qdµκ(x). (13)
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Note that ωm(f, x−1)p,k ≤ C4 ∥f∥Lp
κ(R) for all x > 0. By the use of (2), Hölder

inequality and (7) we have∫ 1

1/2
λ(x)ωr

m(f, x−1)p,kx
−2κr/qdµκ(x) ≤ 22κr/qCr

4∥f∥rLp
κ(R)

∫ 1

1/2
λ(x)dµκ(x)

≤ C5

(∫ 1

−1
|λ(x)|q/(q−r)dµκ(x)

)1−r/q (∫ 1

0
t2k−1dx

)r/q

< ∞.

Thus, the right-hand side of (13) is finite. On the other hand, by (7) and the

condition λ ∈ L
q/(q−r)
k [−1, 1] we obtain∫ 1

−1
λ(x)|Fκ(f)(x)|rdµκ(x)

≤
(∫ 1

−1
|Fκ(f)(x)|qdµκ(x)

)r/q (∫ 1

−1
|λ(x)|q/(q−r)dµκ(x)

)1−r/q

< ∞. (14)

From (13) and (14) we deduce the statement of (4).

Theorem 5. Let 1 < p ≤ 2, 1/p + 1/q = 1, s ∈ N, m > 0 and f ∈ W s
p,κ. If

λ ∈ Aq/(q−r),k for some 0 < r < q, λ ∈ L
q/(q−r)
k ([−1, 1]) and the integral∫ ∞

1
λ(x)x−2rκ/q−2rsωr

m(Ls
κf, x

−1)p,κdµκ(x),

converges, then λ(x)|Fκ(f)(x)|r ∈ L1
k(R).

Proof. It is easy to see that if λ(x) belongs to the class Aα,k with the constant
C1 = C1(α), then λ1(x) = λ(x)x−2rs also belongs to Aα,k with the same constant
C1. Substituting λ1 instead of λ and f1 = Ls

κf instead of f into (13) and applying
Lemma (1) we obtain∫
|x|≥1

λ1(x)|Fκ(f1)(x)|rdµκ(x) =

∫
|x|≥1

λ(x)
|Fκ(Ls

κf)(x)|r

|x|sr
dµκ(x)

=

∫
|x|≥1

λ(x)|x|−sr|Fκ(Ls
κf)(x)|rdµκ(x)

≤C2

∫ ∞

1/2
λ(x)|x|−r(2κ/q+s)ωr

m(Ls
κf, |x|−1)p,kdµκ(x).

(15)

As in the proof of Theorem (4) we show that the right-hand side of (15) is finite.
By (14) we have λ(t)|Fκ(f)(t)|r ∈ L1

k([−1, 1]). Theorem is proved.
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Theorem 6. Let 1 < p ≤ 2, 1/p + 1/q = 1,m, s ∈ N and f ∈ W s
p,κ(R). If

ω ∈ Φ, limδ→0ω(δ)/δ
m = 0 and f ∈ W sHm,ω

p,k (R), then f(x) = 0 a.e. on R.

Proof. using Lemma 1, Lemma 2 and Hausdorff-Young type inequality (7)
one has(∫

R
|Bκ(λ, x)− 1|qm|x|qsFκ(f)(x)|qdµκ(x)

)1/q

≤ C1||∆m
h,dLs

κf ||p,ν ≤ C2ω(λ),

for λ > 0. By the condition limδ→0
ω(δ)
δm = 0 we obtain that

lim
λ→0

λ−qm

∫
R

|Bκ(λ, x)− 1|qm

|xλ|qm
|x|qs|xλ|qm|Fκ(f)(x)|qdγk(x) = 0.

The behavior in 0 of the kernel Bκ(λ, x) could be expressed as follows ( see Lemma
1 in [15] )

Bκ(λ, x) = 1− 1

2k
|λx| − λx

2k(2k + 1)
+

sgn(λx)

2k(2k + 1)(2k + 2)
|λx|2 ++o(|λx|2).

Since lim|λx|→0
|Bκ(λ,x)−1|

|λx| = 2k+1+sgn(λx)
2k(2k+1) > 0 (see Introduction), we see that∫

R
|x|q(m+s)|Fκ(f)(x)|qdµκ(x) = 0.

Then Fκ(f)(x) = 0 a.e. on R and by the Plancherel equation (5) we have f(x) =
0, a.e. on R.

We will write A(i) ≍ B(i) if A(i) = O(B(i)) and B(i) = O(A(i)).

Corollary 1. Let 1 < p ≤ 2, 1/p + 1/q = 1, f ∈ Lp
κ(R), m ∈ N, r ∈ (0, q). If

α > 2( rq − 1)k and the integral∫ ∞

1
xα−2rκ/qωr

m(f, x−1)p,κdµκ(x), (16)

converges, then |x|α|Fκ(f)(x)|r ∈ L1
k(R).

Proof. Note that∫ 1

−1
|x|αq/(q−r)dµκ(x) =

1

Γ (2k)

∫ 1

0
x2k−1+qα/(q−r)dx < ∞,
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if 2k − 1 + qα/(q − r) > −1 or α > 2(r/q − 1)k. On the other hand,

I1 =

(∫
Mi

|x|αq/(q−r)dµκ(x)

)1−r/q

≍ 2i(2κ−1+qα/(q−r))(1−r/q) ≍ 2i(2κ(1−r/q)+α),

and

I2 =

∫
Mi−1

|x|αdµκ(x) ≍ 2i(2κ+α),

whence I1 ≤ C12
−2κir/qI2 , i ∈ Z, and |x|α ∈ Aq/(q−r),κ for all α ∈ R. Using

Theorem 4 we obtain the statement of Corollary.

Corollary 2. Let 1 < p ≤ 2, 1/p + 1/q = 1, f ∈ Lp
κ(R), m ∈ N, r ∈ (0, q). If

α > 2(r/q − 1)k and f ∈ DLip(β, p,m, 0) and

q > r >
αq + 2κq

2κ+ βq
,

then |x|α|Fκ(f)(x)|r ∈ L1
k(R).

Proof. is clear that under conditions of Corollary the convergence of integral∫∞
1 xα−2rκ/q−rβx2κ−1dt is sufficient for the convergence of (16). The condition:

α− 2rκ/q − rβ + 2k − 1 < −1,

is equivalent to r(β + 2κ/q) > α + 2κ and by Corollary 1 the result of present
Corollary follows.

Corollary 3. Let 1 < p ≤ 2,1/p + 1/q = 1, f ∈ Lp
κ(R), m ∈ N, r ∈ (0, q),

f ∈ Lp
κ(R) and for some β, γ > 0 the relation ωm(f, δ)p,κ = O(δβ/(ln(1/δ))γ), 0 <

δ < 1. If
2κq

βq + 2κ
< r < q or r =

2κq

βq + 2κ
, r > 1/γ,

then Fκ(f) ∈ Lr
κ(R).

Proof. It is clear that λ(x) = 1 satisfies all conditions of Theorem 4. By this
Theorem if the integral

1

2Γ(2k)

∫ ∞

1
x−2κr/qx−rβ(lnx)−rγx2k−1dx, (17)

converges, then Fκ(f) ∈ Lr
k(R). It is clear that the conditions 2κ < 2rκ/q + rβ

or 2κ = 2rκ/q + rβ, rγ > 1 are sufficient for the convergence of (17).
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5. Conclusion

Harmonic analysis is one of the most active fields in math due to its strong
ties to other areas. This field is strongly related to signal processing, image pro-
cessing, and artificial intelligence, particularly convolutional neural networks and
quantum mechanics. These connections allow researchers to develop advanced
algorithms that can analyze and manipulate data in innovative ways. As tech-
nology continues to evolve, the applications of harmonic analysis are likely to
expand further, influencing various scientific and engineering disciplines. In this
work, we studied the κ-Hankel transform, a deformation of the classical Hankel
transform that is closely related to problems in physics involving circular sym-
metries. By studying the κ-Hankel transform, we expand the range of problems
that can be analyzed to include circular symmetries with a deformation. Further
works may be extended to the linear canonical κ-Hankel transform, which is a
larger class of integral transforms used to analyze signals.
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