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Sufficient conditions for weighted integrability of
the x-Hankel transform

A. Khadari

Abstract. In this paper, we establish new sufficient conditions for the weighted integra-
bility of the k-Hankel transform. Our results extend and refine earlier Titchmarsh-type
theorems by removing restrictive assumptions on the modulus of smoothness, such as the
Bary and A, conditions that appeared in recent related works. Using the k-Hankel trans-
lation operator and higher-order moduli of smoothness associated with this translation,
we derive weighted L7 (R)-integrability criteria for the x-Hankel transform of functions
belonging to LP(R) and Sobolev-type spaces W - The obtained results generalize sev-
eral known integrability theorems for Fourier, Hankel, Jacobi—-Dunkl, and Hankel—Clifford
transforms. As applications, we present integrability results under power-type and log-
arithmic smoothness assumptions, as well as Boas-type uniqueness theorems. These
findings contribute to the harmonic analysis of deformed integral transforms and provide
tools applicable to problems with underlying symmetry structures.
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alized Lipschitz spaces, the modulus of smoothness
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1. Introduction

Signal processing, image processing, and radar all extensively use the Fourier
transform and its related integral transforms in the field of harmonic analysis.
These mathematical tools enable the decomposition of complex signals into their
constituent frequencies, facilitating the analysis and interpretation of data across
various applications. As a result, researchers and engineers can enhance system
performance and develop innovative solutions in communication and imaging
technologies. The modulus of smoothness is used to measure the smoothness of a
function. In practical algorithm applications, finite differences are used to replace
derivatives. These techniques not only offer commentary on the behavior of
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functions but also aid in optimizing computational efficiency. This optimization
is crucial in scenarios where processing speed and accuracy are paramount, such
as in real-time signal processing and machine learning algorithms. By using
these methods, professionals can get more accurate results while using fewer
computer resources. This will lead to improvements in technology and data
analysis. By leveraging such approaches, practitioners can improve the accuracy
of numerical simulations and enhance their understanding of dynamic systems.

Let’s consider a function f : R — C that is integrable in the Lebesgue sense
over the real line, denoted as f € L'(R). We define the Fourier transform of f
by:

Flo) = (2m) 12 /R f(t)e-dt, R

If, in addition, f € L*(R) and f € C(R) (f is continuous on R), then the
inversion formula

£(t) = (2m) 12 /R flz)etedz,

takes place for all ¢t € R (see [3, Ch. 5, p. 192]). In this case, we have by the
Riemann-Lebesgue lemma lim, o f(z) = 0, that is, f € Co(R).

In the case 1 < p < 2, the Fourier transform of a function f € LP(R) is defined
as a limit of (2r)~1/2 f; f(z)e”dz in the LI(R) norm sense, where % + % =1
and a - —o00, b = +oc.

In particular, f € LY(R) and the following Hausdorff-Young inequality:

—~ 1/p
1fllg < Clifll, =C (/R IIf(t)det> , JELPR), 1<p<2, (1)

holds. For p = 2, the inequality in is substituted by the Plancherel
equality. For more about these results, refer to [12, Ch. III and IV] or [3, Ch. 5].

For f € LP(R), 1 < p < oo, we consider the modulus of smoothness of order
keN

k
rlt. )= sup [[Afl AEf(@) = S (-1 (’;)m T (k- 2j)h/2).
Shs i=0

J

If wi(f,0)p = O(6%), 0 < a < 1, then we write f € Lip(a,p). If f € Cop(R) or f
is uniformly continuous and bounded on R (f € BUC(R)), then, by definition

wi(f,0) = wir(f,0)0o = sup sup|Aff(z)|.
0<h<é z€R
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The following result of Titchmarsh is well known (see [Q,ACh. 4, Theorem 84]).
Let 1 <p <2 0<a<1,and f € Lip(a,p). Then f(t) € L(R) for all #
satisfying the inequality
p p

—— <[ <L g=—.

p+ap—1 f=q p—1
We denote that a non-negative measurable function A(t) € L} _(R;) belongs to
the class Ay, v > 1, if there exists C(y) > 1 such that

2i+1 21'

1/
( / | M(t)dt> <2t [T awd, ez @)
g

2i—1

According to the Holder inequality, it is evident that the set A, is a subset of
Ay, when 1 <~ < 1. The strictness of this embedding has been demonstrated
in [12]. It is evident that a function A(t) > 0 is measurable and possesses the
attribute

sup{A(t) : 2° <t <2} < Cinf{\(t): 271 <t < 2"}, i€Z

is contained in all classes A, v > 1.

Gogoladze and Meskhi [9] presented an analog to formula specifically for
sequences. The formula was proposed by Méricz [14] who demonstrated the
following outcome: Given 1 < p < 2 and f € LP(R), if the equation % + % =1
holds, where 0 < r < ¢, and A belongs to the set A, /(,—ypir), then

[ MolFwra s [ e gy,
t]>2 1
A more general result and proof of its sharpness may be found in [12].

The main purpose of this article is to obtain a variant of the above proposition
by the use of the modulus of smoothness wi,(f,8)px = supo<p<s [|AL flL2w)-
This result generalize a previous one by A. Elgargati, M El Loualid and R Daher
see[T]

A recent similar result obtained by S. Volosivets [24] considering a majorant of
the modulus of smoothness w with additional condition on w?, that is most be
in BN Ag where B is the Bary class and Ag -condition which is w(2z) < Cw(z)
with f € Hy%(R) defined by the modulud of smoothness wy, (f,6)xp = A7, f+
A™, _f|l, In this paper and based on the article [26], we use the L} (R) and the
Sobolev spaces W, instead, see [24] for more details. Similar results are already
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obtained for Jacobi-Dunkl transform, Bessel transform, first and second Hankel-
Clifford transform, see [8| 27, 29].
The subsequent sections of this work are structured as follows:

e In the second section we give the definition and properties of the k-Hankel
transform.

e In the third section, we state and prove several valuable auxiliary results,
particularly the estimations of the x-Hankel kernel.

e In the fourth section we state and prove the main result:

Theorem 1. Let 1 <p<2,1/p+1/q=1, f € LL(R), meN. If
A€ Ap/pprir)k = Ag/(g—r) k>

for some r € (0,q), X € /=) —1,1| and the integral
k
/ M)z 19w, (f 2~y pdps (@),
1

converges, then \(z)|F.(f)(z)|]" € Li(R).

and

Theorem 2. Let 1 <p <2, 1/p+1/g=1,s€N, m>0and f € W;,.
If X € Agjig—r)k for some 0 <1 <q, A€ LZ/((FT)([—I, 1]) and the integral

/ )\(x)x—an/q—Qrsw:n(Lif’ l‘_l)pﬁd,un(-f),
1
converges, then \(x)|Fq(f)(x)|]" € LIIC(R)'

Finally, we conclude some special cases, and one of them is about the inte-
grability of Fi(f)

2. k-Hankel transform and generalized translations

In this section, we present the fundamental tools required for the x-Hankel
transform F,. To obtain additional information, we direct the reader to the
references [20, 21].
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For k > 1/2 and 1 < p < oo, let LE(R) be the space of measurable functions
f on R such that

1
1z = ( / !f(fﬂ)!pdun(x)> < oo, forl<p< oo,

|\f||L,3°(R) = esssup|f| < oo,
zeR

where

1
du,(z) = 26—,
fr () I (2R) |z x

For p = 2, we provide this space with the scalar product

iz = | F@al@dus(o)

The r-Hankel transform of f € L1(R) is defined by

/f (A, ) dpg (), AeR

= ( / e—'wdm:c))_l —271r(2k) !

and B, (A, z) is the k-Hankel kernel given by

Bi(A\,x) = Bg(Az) = jox— 1(2\/])\33) 2

where

1 ]2k+1 (2\/ ‘)\ x )

+

Here

Jalw) = T(a+ 15 ) alw) = 5)0 mm;—f;j =y (g)z’“,

denotes the normalized Bessel function of index «.
Consider the Dunkl Laplacian, defined by

d 2kd k
=gt oo w5
where S f(z) = f(—x). The kernel By, satisfies the following differential-difference
equation:
(2 AkBe(\, 2) = A Be(A, ). 3)
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We point out that
B.(0,y) =1,  Bu(z,y)[ <1,
for all z,y € R. In particular, we deduce that for all f in L}(R),
[Fe() ey < el fllor my» (4)

The observation is that F, serves as a natural extension of the usual Hankel
transform.

B (z,y) = 3(Be(z,y) + Be(z, —y)) = jor—1(2V/|zy]).

The r-Hankel transform of an even function on the real line is a specialized form
of the Hankel type transform on R.
The following statement is a particular case of [20, Theorem 3.39].

Theorem 3. Assume that k > 1/2.

1. (Plancherel’s theorem) F,; is an isometric isomorphism on L%(R),
[ @ (o) = [ IFLDO (). o)
2. (Parseval’s formula) For all f,g in L?(R), we have
[ 1@a@dnta) = [ FDNF D). (

3. (Inversion formula) F satisfies

Fil=Fe

By using the Plancherel formula and the inequality , it can be easily
concluded that for every function f belonging to the space LE(R) with 1 < p < 2,
the x-Hanekl transform F,(f) also belongs to the space L (R), where % + % =1.

2-p

Fe (P L2 ) < e |IF1 2 ) (7)

Said in [21] introduced a translation operator on the space LL(R),1 < p < oo,
using the following formula:

- /R FR)CE(2),  zyER.
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where
Ky(z,y,2)|2[* "1z, if xy # 0,
dgg,y(z) = ddy(2), ify =0,
ddy(z), ife=0,

with an explicit kernel K, (x,y, z) supported on

(Vi = VIl)” < Izl < (VT + Vi)

For the precise formulation of K (z,y, z), we refer to the paper by Ben Said [21].
Here, we present a summary of the findings for the x-Hankel translation op-
erator as documented in [21].

Proposition 1. Assume that k > 1/2.

1. For all f € LE(R), 1 < p < oo, and for all x,y € R, we have

2. If f € Li(R) and A,z € R, then
Fr(m2 FYN) = Be(A, ) Fi(£)(A). (8)
3. For all fin L3(R), we have

HTffHLz(R) < HfHLi(R)y Vx € R.
4. For all f € Ly(R) such that Fx(f) € Li(R), we have

T f () = e /R B (1, ) B (4 €) Fo () (€) dpn (€).

The explicit formula of the kernel K (x,y, z) implies that the operator 7, f is
bounded. To be more exact:

Proposition 2. (See [2])]) For all f € LE(R), 1 < p < oo, there exists a positive
constant Ay, such that

HT;fHLﬁ(R) < AH”fHLﬁ(Ry Vr € R.

Several essential properties of 71 f for f being an even function are established
n [21]. Let L% .(R) be the space of even functions in L (R).
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Proposition 3. 1. For all fin LZ@(]R), 1 <p<oo, we have

T F(y) = /0 F(lz] + ly] — 2/ cos §)

{1 + S’f;l(_“"? <4k0052¢ - 1) } (sing) ¥ 2de.

2. For all non-negative f in L;’G(R), we have, for all x € R,
20, Tif € Ly(R),

and

st = | f@)dnnto)
R R
3. For all fin LL (R), 1 < p < 0o, we have
72 fllzwy < 1 fllzw), Yz €R. 9)

3. Auxiliary propositions and definitions

Denote
L (A) = [AlAx(N), (10)

and W', be the Sobolev space constructed by L as follows:
Wi ={f € LL(R) : L f € LE(R), i =1,..,n},

where L. f = L, (LL M f) and LOf = f .

Denote by @ the set of continuous and increasing on Ry = [0, 00) functions
w such that w(0) = 0. If w € ® and fO(S t~tw(t)dt = O(w(d)), then w belongs to
the Bary class B; if w € ® and 6™ [~ ¢t " Lw(t)dt = O(w(d)), m > 0, then w
belongs to the Bary-Stechkin class By, (see [13]). We say that w € ® satisfies the
Ay -condition, if w(2z) < Cw(x), z € Ry.

Let w € ® . Let us introduce for m € N, w € ® and k > 1/2 the spaces of
generalized Lipschitz classes :

Hy " (R) = {f € LE(R) : [|AR fll pr) = Ow(h)), h >0},

and

i (R) = {f € H5*(R) + [ A f(2) | oy = o(w(h)), = — 07}
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The spaces H;,‘:(R) and h;}:‘,’:(R), are called the Lipschitz class Lip(x) and

little Lipschitz class lip(k), respectively. The spaces H. ;ZJ(R) and hi:‘,:(R), are
called the Zygmund class Zyg(x) and little Zygmund class zyg(k), respectively.
Also we consider for w € &,1 < p < oo and m,r € N an analogue of Nikol’skii
space

W'HT (R) = { few! (R):LLf e H;’j,;w(ﬂza)} .

For r = 0 we have by definition W"H 7*(R) = H;*(R). If w(d) = 6%, 8 >0,
we denote WTH;'};“(R) as DLip(B,p,m,r).

Let A(z) be a non-negative measurable function from Li (Ri), 1 <7y < oo,
Z4 ={0,1,...}. If there exists C(vy) > 1 such that

i

i+l 1/~
( / | M(x)dun(x)> < C(y) 220/ / Ma)dpun(z), i€Z,
2 2

i—1

then A € A, . . Also we put A(z) = A(—=) for all z <O0.
Using the operator 777 we define the generalized difference operator of order
m € N* with step h > 0

m (@) = jio(—w’ (" )irrco)

We consider the modulus of smoothness of order m in LE(R) related to k-
Hankel translation

Wi (fy)pk = e |AR . f1] Lp (R)-
By [2| we see that wy,(f,d),x is well defined for f € LE(R).
Lemma 1. Letn € N,1 <p < oo and f € W},.. Then
FeLif) (@) = (=1)°|z[*Fi(f) (@),
s=1,2,...,n a.e. onR.

Proof. Using the formulas [3| and

Lemma 2. LetmeN, se N, 1<p <2, f€ W;, and h>0. Then

Fe(Anlif) (@) = (=1 (1 = By(z, h))" F(f)(2)-
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Proof. 1t is sufficient to study the case s = 0. If f € LE(R), then A}, f
exists due to the inequality @ On the other hand, by from the equality
limy, 00 || f — fn”Lﬁ(R) =0, 1< p <2, we conclude that

nlggoufﬁ(f) _-F/i<fn)HLZ(R) =0, 1/p+1/q: 1.

Since by (8) Fu((7F)7f)(N) = (Bx(\,h))?Fu(f)(A) ae. on R for j € Zy =
{0,1,...}, we obtain

FAAR)@) =317 (7 ) BRI FLA) @) = (L Bl )" Pl ) o)

a.e. on R.

in the next of this section and in order to prove that C' # 0 in part 1 of
Lemma [f] see [[15], Lemma 1] witch is not clear, we state and prove the following
important results:

Lemma 3. The Bessel function j, have following the integral representation:

, I'(a+1) /1 2va—1
= 1 —t%)*" 2 cos(&t)dt.
Proof. using the integral representation of j, in [19] and the fact that the
function t — (1 — tQ)O‘_% sin(&t) is odd,
I'a+1)

. ! 2ya—2 it
Ja(§) :\/M/l(l—t) 2e'Stdt

—L—i_l) ! 42 oa—% COS isin
~ (a1 /_1(1 t°)*72 (cos(&t) + isin(&t)) dt
I'(a+1)

vy < /_ 11(1 — 12)%73 cos(Et)dt + i /_ 11(1 — t2)3 Sin(gt)dt)

— F(a+1) ! 42 a,% coS
=TT /1(1 £2) (¢t)dt.

Lemma 4. The k-Hankel kernel B, (§) admit the flowing integral representations,

° if £<0

_ T@s+1) ! — )25 % cog
B = ey [0 eos2 T,
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. T(2k)  26—1 [! 2rt? _ 228
B.(¢) = NEYCT Y /_1 <1+ 5 1) (1-1%) (2t(/€))dt.

Proof.

e if £ <0 then by the formula in [19]
By (€) =jax (2V/1€])

_ T@k+1) ! 2251 cos
=t D) /_1(1 t2) (24/1€|t)dt.

e if { > 0 then by the formula in [19] and the fact that the function ¢ —
K*é .
sin (2t(\/€)) (1 + 22:le> (1- t2)2 2 is odd,

Bi(€) =2jn-1 (2V/E) — jae (2VE)
L(2k) 2k-1 /1 exp (22’75(\/5)) (1 + 26t > (1- t2)2”_% dt

TyAl2e - —1 /), 2% — 1

o) 2l o (2vD) (1 o) (- ) e

T 2R 2e -1/, 2% — 1

[(2r) 2x -1 / in (21v) (1+ ot )(1—752)2“_36“

2
Vil(2k — 26— 1 )4 2k — 1

_ T@s)  2k-1 /_1 <1 + 2i“f21> (1- t2)2"—3 cos (2t(\/§)) dt.

VAl (2k — 52k -3 /4

Lemma 5. Let F(t) be an even, non-negative and Lebesgue integrable function
on [—1,1] satisfy the condition f_ll F(t)dt > 0. Then there exists a constant c
such that:

1
/ F(t)sin®(rt)dt > ¢ > 0,
-1

1
Jorr> 3.

Proof. by the Lemma 3.3 in [I7] and the fact that fil F(t)sin?(rt)dt =
2 fol F(t)sin®(rt)dt
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Proposition 4. we have By (&) # 1 for £ > %

Proof. Suppose that £ > % we have

1= Bk(§) =Bk(0) — Bx(&)
K K — 1 Kt? 3
~ o] L (1 3y (- (1 comtav))

-1

oI'(2k) 2k —1 /1 ( 2kt? ) N26—3 . 9
= 1+ 1—t 2 t)dt,
Vil(2r—Don—1 ), an 1) 1 0) s’ (VED

_3
if we put F'(t) = (1 + gz,ffl) (1- 752)2H 2 and r = /€ then we have fil F(t)dt >
0, by the application of Lemma [5| we conclude that

|1 — Bk(§)] > ¢ > 0.

Lemma 6 (see [19]). .
1. Let k > 1/2 and |\x| > 1. Then we obtain the following inequality:
|1 — B.(\,x)| > C,
where C' is positive constant.

2. Furthermore the behaviour in 0 of the kernel Bi(\, x) could be expressed as
follows:

‘BH(AVT) - 1|2 = O(’)\.Z'F%
3. There exists a positive constant C' and n > 0 such that:

IAx| < n = |Bs(\,z) — 1| > C|Az|.

Proof. we refer to the proof of [[15], Lemma 1], except of the problem about
that m = min|\,|e(1,4] |1 — Bs(X, 7)| may be equal to 0, by the application of
we are sure that m # 0
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4. Weighted integrability of x-Hankel transform
Theorem 4. Let 1 <p<2 1/p+1/q=1, f € LE(R), m e N. If
A€ Apjp—prin)k = Ag/(q—r)k »
for some r € (0,q), A € LZ/(Q_T)[—L 1] and the integral
| 2@ (i),

converges, then \(z)|Fx(f)(x)]" € LL(R).

Proof. By the use of the Lemma and Hausdorff-Young type inequality

@I = Bl )™ dins(a) < CrIAT Ay ) < Croom( .y
Let M; = {r € R: 21 < |2[ < 2'}, i € Nand h = 27".we have by (6)(3) 1 —

Bi(x,\) # 0 for 2\ # 0. Since 1 — B, (z, h) is continuous on R we obtain the
inequality Cy = min {|1 — B.(z,\)| : [#A| € [5,1]} > 0 and

G [ FD@ @) < [ IF@I = Bl 2 dtr)

/ FulF) @)1 — Bl 2™ djun () < Creol (.2

By the Holder inequality and the condition A € A, /4—r)x We have for 0 <r <gq

/ @) Fe () (@) dpan ()
M;

< (/Mz M(x)lq/(q—r)dun(x)>1—r/q </Ml ]-",Q(f)(x)|‘1duﬁ(x)>r/q

<Cawl, (f,277), 27 2Kir/a /M‘ Ax)dp (z)

<0 /M @)t (Fo 2 D a(1/2) () (1)

i—1

2271
=20 [ ML (1) @), (12)

1—2

By summing up the inequalities ([11]) over i € N* we find that

[e.o]

/ @)\ Fa( £) (@) dpe () < 2C / @) (fr 2 Vg2 (). (13)
z[>1 1/2
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Note that wy,(f, 2" )pr < Cy 11l 2wy for all z > 0. By the use of , Holder
inequality and we have

1 1
/1 Mz )wr, (fra™)ppa™ 25 9dp () < 2257 9CT f17p g /1/2 Mz)dpr ()

/2
1 1-r/q 1 r/q
< Cs ( / |>\(x)]q/(q”)du,.i(a;)> ( / t%ldx> < .
—1 0

Thus, the right-hand side of is finite. On the other hand, by and the
condition A € LZ/(q_T) [—1,1] we obtain

1
/_ ROEAGIEINE

< ( / 1 |J:n(f)(x)|qdun(:n)>r/ ! ( / | Mw)lq/(q—”dun(x))l‘”q

1 -1
< 0. (14)

From and we deduce the statement of .
Theorem 5. Let 1 <p <2, 1/p+1/g=1,s €N, m >0 and f € Ws.. If
A€ Ayj(q_ryi for some 0 < r < g, A& LY/ ([=1,1]) and the integral

/ )z 25250 (L8 F, ) i (@),
1

converges, then \(z)|F.(f)(z)]" € Li(R).
Proof. It is easy to see that if A(z) belongs to the class A, with the constant
Cy = C1(a), then A\ (z) = A(z)x % also belongs to A, j with the same constant

C}. Substituting A\; instead of A and f; = L7 f instead of f into and applying
Lemma we obtain

/ ’\1(‘E)|fn(f1)(ff)lrdun(x):/ ,\(g;)w
2121 je|>1

‘x’sr

dp(2)
:/||>1 M) || ™ | Fe (LS ) ()| " dp ()

<0y /1 P L S A N )
(15)

As in the proof of Theorem we show that the right-hand side of is finite.
By we have \(t)|F.(f)(t)|" € Li([-1,1]). Theorem is proved.
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Theorem 6. Let 1 < p < 2,1/p+1/q = 1,m,s € N and f € W, (R). If
w e @, lims_ow(0)/0™ =0 and f € WSH;n,;w(R), then f(z) =0 a.e. on R.

Proof. using Lemma (1}, Lemma [2| and Hausdorff-Young type inequality @
one has

1/q
( [ 1800 - 1|qmrmwm(f)(x)wduﬁ(x)) < CIATLE Fllpw < Cao(N),

for A > 0. By the condition lims_,q % = 0 we obtain that

[ 1B — 1
1 qm qs qm K q = .
tim oo [P T A ) o) () = 0

The behavior in 0 of the kernel B, (A, ) could be expressed as follows ( see Lemma
1in [15] )

B 1 Az sgn(Azx) 9 9
Buhva) =1 = opel = ooy Y ok@n - ek 1) 2 T ol

Since lim|y,|—0 |B*“(I)/‘\’§|)*” = 2’“;;:529&()}‘93) > 0 (see Introduction), we see that

[ttt I E @) =
Then F.(f)(xz) = 0 a.e. on R and by the Plancherel equation (j5) we have f(z) =
0, a.e. on R.
We will write A(:) < B(i) if A(i) = O(B(i)) and B(i) = O(A(1)).

Corollary 1. Let 1 <p <2, 1/p+1/q=1, f € LE(R), m € N, r € (0,q). If
a > 2(; — 1)k and the integral

/ 22 (Y, e dp(), (16)
1

converges, then |z|*|F.(f)(z)|" € L}(R).
Proof. Note that

1 1 1
aq/(g—r) - 2k—1+4qa/(q—)
/_1 || dpu(x) T2k /0 x dx < 00,
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if 2k —1+qa/(g—r) > —1or a> 2(r/q— 1)k. On the other hand,

1-r/
I = </ ’x‘aq/(q—r)duﬁ(xo ! = 21(2r=1tqa/(q=r))(1=r/q) — 9i(2k(1—r/q)+a)

k3

and
b= [ el duna) = 2105
M.

i—1

whence I} < C1272%7"/4], | i € Z, and |z|* € A
Theorem {4 we obtain the statement of Corollary.

q/(q—r)x for all a € R. Using

Corollary 2. Let 1 <p <2, 1/p+1/q=1, f € LE(R), m € N, r € (0,q). If
a>2(r/q— 1)k and f € DLip(B,p,m,0) and

aq + 2kq

>r > ,
-7 2k + Bq
then |x]*| Fe(f)(x)|" € Li(R).

Proof. is clear that under conditions of Corollary the convergence of integral
floo g 2re/a=rB 2514 is sufficient for the convergence of . The condition:

a—2rk/q—rf+2k—1< —1,

is equivalent to r(8 + 2x/q) > a + 2k and by Corollary [1] the result of present
Corollary follows.

o< 1. If
2kq 2kq

a1 2n <r<gq orr= Bq 1 2’
then F.(f) € L},(R).

r>1/y,

Proof. 1t is clear that A(z) = 1 satisfies all conditions of Theorem |4 By this
Theorem if the integral

1

* —2kr/q —rﬂl —ry 2k—1d 1
2I‘(2k:)/1 x P (lnx) "z x, (17)

converges, then F.(f) € L (R). It is clear that the conditions 2k < 2rk/q + rf
or 2k = 2r&/q + rB, ry > 1 are sufficient for the convergence of .
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5. Conclusion

Harmonic analysis is one of the most active fields in math due to its strong
ties to other areas. This field is strongly related to signal processing, image pro-
cessing, and artificial intelligence, particularly convolutional neural networks and
quantum mechanics. These connections allow researchers to develop advanced
algorithms that can analyze and manipulate data in innovative ways. As tech-
nology continues to evolve, the applications of harmonic analysis are likely to
expand further, influencing various scientific and engineering disciplines. In this
work, we studied the xk-Hankel transform, a deformation of the classical Hankel
transform that is closely related to problems in physics involving circular sym-
metries. By studying the xk-Hankel transform, we expand the range of problems
that can be analyzed to include circular symmetries with a deformation. Further
works may be extended to the linear canonical k-Hankel transform, which is a
larger class of integral transforms used to analyze signals.
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