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Mercer theorem for a limit of Reproducing Kernel
Hilbert Spaces
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Abstract. Let (X,,),>0 be an increasing sequence of compact metric spaces, let K,, be
a Mercer kernel on X, for any n € N and let H,, be the reproducing kernel Hilbert

space associated with K, for any n € N. In this paper, we construct a reproducing
“+o0

kernel Hilbert space Hoo, on X, = U X, from the sequence (Hj,)n>0 and determine

n=0
its reproducing kernel. We end by establishing a version of Mercer theorem in this
non-compact context.
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1. Introduction

Mercer’s theorem was first established on a closed and bounded interval of R
by J. Mercer in 1909 [7]. It gives a representation of a symmetric positive definite
function on a square as a sum of a convergent sequence of product
functions. Mercer’s theorem is an important theoretical tool in theory of integral
equations [13], in the Hilbert space theory of stochastic processes [11], in
the theory of reproducing kernel Hilbert spaces [12], and in machine learning
applications [8]. Mercer’s theorem has been generalized and proved later on a
compact metric space by many authors, such as J. Mairal and V. Philippe [8], S.
Saitoh and S. Yoshihiro [12].

But the domain of a reproducing kernel Hilbert space is not necessarily
compact. So, it would be interesting to study the Hilbert space structure
of reproducing kernel Hilbert spaces on a more general domain, namely a
non-compact domain. Thus, our purpose in this paper is to prove the Mercer
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theorem on a non-compact metric space. Recently, H. Sun has proved Mercer’s
theorem on a non-compact domain which is a union of compact metric spaces
[9]. He has obtained his results under certain assumptions. It is then a natural
question to know whether it is possible to obtain these results without some of
these assumptions. Our main concern in this paper is to consider a non-compact
domain which is the union of compact metric spaces and to prove Mercer’s theo-
rem by weakening Sun’s assumptions. In the next section, we present notations
that are useful for the remainder of the paper. In section 3, from a sequence
of reproducing kernel Hilbert spaces on compact metric spaces, we construct a
reproducing kernel Hilbert space on a non-compact space and determine its repro-
ducing kernel. In section 4, we study first the properties of the integral operator
associated to the reproducing kernel obtained in section 3 and thanks to these
properties, we prove a version of Mercer’s theorem.

2. Notations and Preliminaries

In this section, we fix the notations, give some definitions and review some
properties of reproducing kernel Hilbert spaces.

2.1. Notations and Symbols

X A nonempty set
H Reproducing Kernel Hilbert Space on X
K The reproducing kernel of H
()n A scalar product on ‘H
Il Il The norm on H
RKHS Reproducing Kernel Hilbert Space
H=U>H, The inductive limit of H,
Hy =U;>"Hp The functional completion of H
K The kernel of Hy,
L?(X, i) The space of square integrable functions on X
Ly Operator associated with the kernel K
P The orthogonal projection from H onto H
K* The reproducing function at x of H
I A Borel measure on X
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E, The evaluation map at x
Og Dirac measure at z
14 The characteristic function of a set A
X\Y Elements of X not in YV
1Yy The restriction of the function f to the set Y
Ky Reproducing kernel associated with H
‘Hr | Reproducing kernel Hilbert space admitting K as reproducing kernel

2.2. Preliminaries

Let X be a nonempty set. A kernel K on X is positive definite if for all

r1,T9,...,T, € X and for all a1, as,...,a, € R,
n n
ZZaiajK(xi,xj) Z 0
i=1 j=1

Let H be a Hilbert space of real-valued functions on X and the scalar product
(resp. the norm) is denoted by (,) (resp. |.|[%). H is a reproducing kernel
Hilbert space (as short RKHS) if for each z € X, the map FE, from H to R
defined by E.(f) = f(x) is continuous. E, is the evaluation map at z. By Riesz
representation theorem, for each x € X, there exists a unique vector K* € H such
that for every f € H, f(x) = (f, K¥)%. The function K* is called the reproducing
function at z and the function K3 : X x X — R defined by Ky/(x,y) = K%,(y) is
called the reproducing kernel for H. Nevertheless, if there is no possible confusion,
K4 will simply be denoted by K. We record in the following proposition some
easily proved facts about RKHS.(Some of which may be found in [11, 2, 3, 4, 6]).

Proposition 1. Let the notations be as above.
(i) The kernel K is positive definite
(i) K(y) = K*(y) = (K*, K¥)y, = (KY, K*)y, = K¥(z) = K(y,)
(i) |13, = (K%, K*)y, = K(,2)
(i) 1K (2,9)? < K(z,2)K (y,y)
(v) The family (K*)zex generates H.

The result (i) admits a converse due essentially to E.H. Moore [10]; namely,
for every positive definite kernel K there corresponds one and only one RKHS
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Hyx which admits K as a reproducing kernel. If Hg is a closed subspace of H,
then Hy is also a reproducing kernel Hilbert space with kernel defined by

Ki(y) = P(K%)(y) withye X

where P is the orthogonal projection from H onto Hj.
The projection P is given by

P(f)(z) = (K§, f)x with feH [6].

Now let X be a topological space. A Mercer kernel K is a positive definite kernel
which is continuous. In this case, Hx consists of continuous functions on X [11].
Let (X,d) be a compact metric space, let u be a finite Borel measure on X and
let L2(X, i) be the space of square integrable functions on X. If K is a Mercer
kernel then the operator Lx on L?(X, i) defined by

Licf(x) = /X K (2. 9) £ (4)dp(y)

is compact, positive and symmetric [8]. It has at most countably many positive
eigenvalues {\;}5°, and corresponding orthonormal eigenfunctions {®;}>°, [8].
Mercer’s theorem permits then to characterize the RKHS H - and the reproducing
kernel K in terms of spectral decomposition of the operator Lg. Precisely, the
Mercer’s theorem [8] asserts that:

K(z,y) =Y \idi(z)®i(y)
=1

where the convergence is absolute and uniform on X x X. We achieve this section
with the notion of functional completion. Let (H1, (.,.)) be a pre-Hilbertian space
of real-valued functions defined on X (not necessarily a topological space). We
say that H is a functional completion of H if

e H is a vector space such that Hy C H

e H is equipped with an inner product (.,.) i such that (H, (.,.) ) is a Hilbert
space and for every x € X the linear functional ¢, f = f(z) is continuous
on H.

The following lemma gives sufficient conditions for a pre-Hilbertian space
of functions to have a functional completion.

Lemma 1. (/1)) Let (Hy,(.,.)) be a pre-Hilbert space of real-valued functions
defined on X. If
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o For every x € X, the linear functional 6, f = f(x) is bounded on Hy

e For every Cauchy sequence (fy)nen of elements in Hy, the condition
lim,, st oo frn(z) =0 for all x € X implies that lir_i{l | follz, =0,
n—-—+0o0

then Hyi admits a functional completion.

3. Limit of Reproducing Kernels Hilbert Spaces

In this section, we consider Xo C X; C ... C X,, C ... an increasing sequence
+00

of metric compact spaces. We set X, = U X, and let p be a non-degenerate

n=0
Borel measure on X,. For each n € N, we consider a Mercer kernel K,, on X,.

We assume that for any n € N, K, is the restriction of K,11 to X,, x X,,. For
all n € N, let H,, be the reproducing kernel Hilbert space associated with K, as
its reproducing kernel by Moore’s theorem [10].

Proposition 2. For all n € N, the map S,, from H, to H, 1 defined by

flz)ifx e X,
0 otherwise

Sn(f)(@) = {

18 an tsometric embedding.
Proof. Let f € H,,. Since the family (K¥),cx, generates H,
o
then f = Z a; KY, with o; € R, x; € X, for any ¢ € N. So according to Sy, (f)’s
=1

definition and restriction assumption on K,,’s, we have
o) o)
Su(f) = aililx, =Y aiKp1x,
i=1 i=1

where 14 is the characteristic function of a set A. So S, (f) € Hp+1. Also, Sy, is
clearly linear and injective. Now,

1Sn () Frnsy = (Sn(f)s Sn(F)) i
= wKiilx,,)> oKy 1x,)n,
i=1 j=1

= (f, N, = 1%,
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So S, is an isometry. O
Then thanks to proposition 2, we can identify H, to a closed subspace of H, 1
and assume that

H, C Hyy for all n € N.

Let us designate by T, = {f : Xoo — R}, the set of real-valued functions
defined on X.

Remark 1. For any integer n, we can identify H, to a subspace of T.,. In fact,
the map: V, : H, = T defined by

f(z) ifr e X,
0 otherwise

Va(f)() = {

s an embedding.

It follows from the remark 1 that we can assume for all n € N, H,, C T.
We set H = |J,"> H,, and let us consider the map: (,)y : H x H — R defined
by (f,9)u = (f,9)m, if f,g € Hy. It is clear that (,)py defines a scalar product
on H.

Theorem 1. The pre-Hilbert space (H,(,)r) admits a functional completion.

Proof. Let x € X and, let us consider the linear form §, defined on H by
0:(f) = f(z) for all f € H. Let us show that d, is bounded. Since z € X, then
there exists ng € N such that for any n > ng, ¢ € X,,. Also f € H implies that
there exists ny € N such that for any n > n;, f € H,. Setting p = max{ng, n},
we have K € H,, [ € Hp and
gKg lg,= VEKp(@,2) = \/Kpy(2,2) =|| K& |, since Koy, = Kp|x, xx,,-

0

102 f| = |f ()| = [(f, K3 m, |
< f e, | 55 s,
<I S ez, | K (g
< f el Ky Nz

and therefore 0, is bounded on H .

It follows that we can assume for all n € N, H,, C T.

We set H = J,"2 H,, and let us consider the map: (,)y : H x H — R defined
by (f,9)m = (f,9)m, if f,g € H,. It is clear that (,)q defines a scalar product
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on H. Suppose that (fp)pen is a Cauchy sequence of elements of H such that for
all z € X, liIJ'rn fp(z) = 0. For all (p,q) € N2, we have:
p——+00

H fp HJZLISH fp - fq H%{ +2’<fp7fq>H’

which implies

lim | f, HH<\/ tim (| fp — fy I3 +21{Fp fo)u):

p—r+00

Now, f, € H and f, € H imply that there exists n(, ) € N such that f, € H,,(, )
and fq € Hy(p,q)- It comes from proposition 1(v) that
oo

X5 .

fo= Z ip n(pq yi o= Zaman;,q) with @iy, ajq € R; 2ip, 24 € Xn(pg)-
i=1 j=1

Thus,

K
<fp7 fq H — ZO‘Z,Z) n ;q Za] qK Jpqq) n(p,q)
acl xT;
= Z Z QipQj, ‘1 n(:tiq)’ K Ep q)> n(p,q)
B (o] o0 mi’p
= Z Z Qi pjg K, (p,q) (@,9)
i=1 j=1
= Z Z Qi,pQj, qK Zp (p,q) (j,q)
o o
xq,
SOOI DTN
j=1 i=1
D
= Z g fp(@jq)
j=1

It follows that

im (fp, fg)g = lim Za]qu Tjq)

p——+00 p——+o00

p——+00

Z @jq lim fp(zjq) =0



50 Kouakou Darona N’DRI, Ibrahima TOURE

We also have limp—+00 || fp — fg ||[#= 0 because (fn)nen is a Cauchy sequence
q—r+00

and subsequently, limy, 4o || fp ||z= 0. Thanks to lemma 1., we deduce that H
admits a functional completion. O

We denote by H., the functional completion of H. The first part of previous
proof shows that H, is a reproducing kernel Hilbert space.
Consider the map: Ky : Xoo X Xoo — R defined by Koo(z,y) = Ky(x,y) if
z,y € Xy.

Theorem 2. We have

(i) Ko is the reproducing kernel of Hoo

(i) Ko is a Mercer’s kernel
Proof.

(i) Hs is a reproducing kernel Hilbert space and denote by K
its reproducing kernel. Let x € X,,, and let f € H,, for a fixed ng € N.
We have f(z) = (f, KZ) i, = (f K2) a1
But, since X,,, C Xoo and f € Hoo, we have f(z) = (f, K*) .-
So by the uniqueness of the reproducing function at one point, we deduce
that K* = KJ . Now if x,y € Xu, then there exists p € N such that
z,y € X, and we have

K(z,y) = K*(y) = K, (y) = Kp(z,y) = Ko(2,9).

(ii) Since K is the reproducing kernel of Ho, then K is positive definite(see
Proposition 1.(i)). It is also clear that K is continuous for the inductive
limit topology.

4. Mercer Theorem

Let 4 be a non-degenerate bounded measure on X, and let L?(Xo, i) be
the space of complex-valued square integrable functions on X.,. In this section,
we will assume that for all x € X, || KZ, [|12(x.)< 00
Thus, for any f € L?(Xu, it), we have

[ ietemsoin < ([ aaraw) ([ roraw)”
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1/2
<1 F o (/X 1K§o<y>\2du<y>) < o

For any f € L?(X4, 1) and for any z € Xo, we set

L, f(z) = . Koo(,y) f(y)du(y)

We consider the sequence (Y),)n>0 defined by Yy = X and for all n > 1,
Yo = Xp\ X1
It is well-known that (Y},),en is a disjoint sequence and for all n € N

UYR:UX,C:X” andXOO:[an: GXR.
n=0 n=0

Theorem 3. For any f € L*(Xoo,t), L. (f) € Hoo.

Proof. Let z € X and f € L?(X s, 1), we have

L, f(z) = . Koo(,y) f(y)du(y)

_ / Koo(a,y) f(y)du(y)
-

n=
o0

_ Koo, y) f(y)du(y)

where f,, = f|X,, is the restriction of f to X,,.

For any = € X and m € N, we define ¢, by ¢, (x) = / Koo(z,y) f(y)du(y)
Xm

and set m, = inf{m e N:z e X;,,}.
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Since (X, )n>0 is an increasing sequence then for any m > m,, we have z € X,
and therefore

_ / Ko, ) £ (0)dp(y).

X’I’L
= LKmfm( )
So for m > m,, we have d)nLE H,,. Since H,, C H for any m, then
limy, 5400 ¢m = Li. (f) € H= Hy Il

Let us consider for any m € N, the map [y, : L2( Xy, ftm) — L*(Xoos 1)
defined by

() if x € Xy,
T ) =
m(9)(@) {0 otherwise
where fi,, is the restriction of u to X,,.
Theorem 4. For any m € N, I'y, is an isometric embedding.

Proof. T, is clearly linear and injective. Let ¢ € L*( X, fim)-
T (@ oy = [ IPul@) @) ()
— [ Ta@@Pdu) + [ @) Pduta)
Xm Xoo\Xm

- / 16(2) du(x)

2
= H¢||L2(Xm,um)
So Iy, is an isometry. d

For sufficiently large m, ¢,, as defined in the proof of theorem 3. lies in
L?(Xm, ptm) and using the theorem 4., we can consider for sufficiently large m,
ém as an element of L%(Xoo, it).

Theorem 5. Ly (f) € L?(Xoo, it) for any f € L?(Xoo, t).

Proof. For p,q € N
Op = / KY f(y)du(y) and ¢4 = / K! f(t)du(t) as defined in the proof of
X X,

theorem 3. For p and ¢ sufficiently large, we have

i (Op bphr2(eesy = I (] FC T (y)dnly / 14(6)) £2(X oo )
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p—r—+00

= (Lo () Lk (F)) 12 (X o )

— L (F) 2

= ( lim . K& f(y)du(y), lim / Ko F(0)du(t)) 12(x o )
p

and
p,qh—>H—&1-oo<¢p’ ¢Q>L2(X007N) - qlin-a-oo< Ky d/,L / Kt >L2(Xo<>al‘)
) t
= ( lm_ / KT Wdutw), i [ KO 0x

= (L. (f), LKoo(f»LQ(Xoo,u)

= | Lk, (f) H%%xw,u)
Thus
qulgﬂoo | ép — &4 H%Q(Xoo,u) = p7qﬂﬁm(<¢pa OP)12(X o) — 2{Pps Pg) 12(X o ) T (P> Pg) 12 (X o))

= | Lxo (f) HLZ(XOO,M) —2|| LKoo u(f) HL2(XOO,M) + Lk (f) HL2(XOO,M): 0

S0 (¢m)men is a Cauchy sequence in L?( X, ) which converges to Ly f
(see the proof of theorem 3.). Consequently, L f € L*(Xoo, i) O

Theorem 6. For any f € L?(Xoo,it) and for any h € L*(Xoo, 1) N Hoo
we have (Lk (f), M u.. = (f, M) r2(x0 )

Proof. Let h € L*(Xoo, 1) N Hyo
(i) B = ([ KL )dul) )
= F)I(KS, h) adp(y)
Xoo

= f(y)h(y)du(y)

Koo

<f7 >L2 (Xoo,t)
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Theorem 7. Lg_ is a positive and self-adjoint operator .

Proof.

(Lice (/)2 0) 12y = / Lico (£)(@)g(x)dp(z)

oo

- [ ( N Koo(%y)f(y)dﬂ(y)) §(@)du(z)
- ( o w)g(x)du(w)> F()du(y)
= /X ) L. (9)() f(y)du(y)

= (f, Lk, (9)>L2(Xoo,#)
then Ly is self-adjoint. Let f € L?( X, 11).

Lo fo )2y = / Lico (f)(@) () du(z)

[e'9]

-/ ( Koom,y)f(y)du(y)) £ () d(z)
Xoo Xoo
_ / | Eoclw ) f)f @)dply)dp(z) > 0

since K, is a positive-type function. We deduce that Lg_ is positive.

g

Lk is a self-adjoint and positive operator, so Lx_ has positive eigenvalues
(Ak)ken and the associated eigenfunctions (¢)reny form an orthogonal system.
By dividing each vector by its norm, we can assume that the system (¢y)ren is

orthonormal.

Theorem 8. ( Mercer’s type theorem,)
For all x,y € X there exists n € N such that

Koo(w,y) = > MPatb(x) Pathi(y)

k>1

where the convergence is absolute and uniform on X, x X,, and P, is
the orthogonal projection from Hs onto H,.

Proof. According to remark 1., for each n € N, H,, is a subspace of Hx.

Recall that P, is defined by (see [6])

Pof(x) = (Ky, [ He
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for f € Hy and x € Xo,. We have on one hand

Po(Li. ¥r) = Po(Authr) = e Pr(Vr)

and on the other hand for x € X,

Po(Lk, n)(w) = (K}, L k) Hy,

(
= (K5, k) 12(x00)

= (Pu(K7), k) r2(x.0)
= (K, Pn¢k>L2 00)
= Lk, (Patr) ()

where the second equality is due to theorem 6. and Lg_ v, € Hoo according to
theorem 3. It follows that Ly, (Pntr)(z) = Mg Pn(vx)(z) for any = € X, that is
P, is an eigenvector for the operator Ly, . It is also clear that an eigenvector
® of Lk, is an eigenvector of Lx_ as a function in L?(X, 1) and P,® = .
So, (Pt )ken is a family of eigenvectors for the operator Lk, . Using the classical
Mercer’s theorem on compact domain we have

Kn(,y) = > MePuthi() Path(y),

k>1

where the convergence is absolute and uniform on X, x X,. Now for z,y € X
there exists n € N such that z,y € X,, and Ko (z,y) = K, (x,y) and consequently
we have

7,y) = > APutbp(a) Patoe(y)

k>1
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