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Mercer theorem for a limit of Reproducing Kernel
Hilbert Spaces
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Abstract. Let (Xn)n≥0 be an increasing sequence of compact metric spaces, let Kn be
a Mercer kernel on Xn for any n ∈ N and let Hn be the reproducing kernel Hilbert
space associated with Kn for any n ∈ N. In this paper, we construct a reproducing

kernel Hilbert space H∞, on X∞ =

+∞⋃
n=0

Xn from the sequence (Hn)n≥0 and determine

its reproducing kernel. We end by establishing a version of Mercer theorem in this
non-compact context.
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1. Introduction

Mercer’s theorem was first established on a closed and bounded interval of R
by J. Mercer in 1909 [7]. It gives a representation of a symmetric positive definite
function on a square as a sum of a convergent sequence of product
functions. Mercer’s theorem is an important theoretical tool in theory of integral
equations [13], in the Hilbert space theory of stochastic processes [11], in
the theory of reproducing kernel Hilbert spaces [12], and in machine learning
applications [8]. Mercer’s theorem has been generalized and proved later on a
compact metric space by many authors, such as J. Mairal and V. Philippe [8], S.
Saitoh and S. Yoshihiro [12].

But the domain of a reproducing kernel Hilbert space is not necessarily
compact. So, it would be interesting to study the Hilbert space structure
of reproducing kernel Hilbert spaces on a more general domain, namely a
non-compact domain. Thus, our purpose in this paper is to prove the Mercer
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theorem on a non-compact metric space. Recently, H. Sun has proved Mercer’s
theorem on a non-compact domain which is a union of compact metric spaces
[9]. He has obtained his results under certain assumptions. It is then a natural
question to know whether it is possible to obtain these results without some of
these assumptions. Our main concern in this paper is to consider a non-compact
domain which is the union of compact metric spaces and to prove Mercer’s theo-
rem by weakening Sun’s assumptions. In the next section, we present notations
that are useful for the remainder of the paper. In section 3, from a sequence
of reproducing kernel Hilbert spaces on compact metric spaces, we construct a
reproducing kernel Hilbert space on a non-compact space and determine its repro-
ducing kernel. In section 4, we study first the properties of the integral operator
associated to the reproducing kernel obtained in section 3 and thanks to these
properties, we prove a version of Mercer’s theorem.

2. Notations and Preliminaries

In this section, we fix the notations, give some definitions and review some
properties of reproducing kernel Hilbert spaces.

2.1. Notations and Symbols

X A nonempty set

H Reproducing Kernel Hilbert Space on X

K The reproducing kernel of H
(, )H A scalar product on H
∥.∥H The norm on H
RKHS Reproducing Kernel Hilbert Space

H =
⋃+∞

n=0Hn The inductive limit of Hn

H∞ =
⋃∞

n=0Hn The functional completion of H

K∞ The kernel of H∞
L2(X,µ) The space of square integrable functions on X

LK Operator associated with the kernel K

P The orthogonal projection from H onto H0

Kx The reproducing function at x of H
µ A Borel measure on X



45

Ex The evaluation map at x

δx Dirac measure at x

1A The characteristic function of a set A

X\Y Elements of X not in Y

f | Y The restriction of the function f to the set Y

KH Reproducing kernel associated with H
HK Reproducing kernel Hilbert space admitting K as reproducing kernel

2.2. Preliminaries

Let X be a nonempty set. A kernel K on X is positive definite if for all
x1, x2, . . . , xn ∈ X and for all α1, α2, . . . , αn ∈ R,

n∑
i=1

n∑
j=1

αiαjK(xi, xj) ≥ 0

Let H be a Hilbert space of real-valued functions on X and the scalar product
(resp. the norm) is denoted by (, )H (resp. ∥.∥H). H is a reproducing kernel
Hilbert space (as short RKHS) if for each x ∈ X, the map Ex from H to R
defined by Ex(f) = f(x) is continuous. Ex is the evaluation map at x. By Riesz
representation theorem, for each x ∈ X, there exists a unique vectorKx ∈ H such
that for every f ∈ H, f(x) = (f,Kx)H. The functionK

x is called the reproducing
function at x and the function KH : X×X → R defined by KH(x, y) = Kx

H(y) is
called the reproducing kernel forH. Nevertheless, if there is no possible confusion,
KH will simply be denoted by K. We record in the following proposition some
easily proved facts about RKHS.(Some of which may be found in [11, 2, 3, 4, 6]).

Proposition 1. Let the notations be as above.

(i) The kernel K is positive definite

(ii) K(x, y) = Kx(y) = (Kx,Ky)H = (Ky,Kx)H = Ky(x) = K(y, x)

(iii) ∥Kx∥2H = (Kx,Kx)H = K(x, x)

(iv) |K(x, y)|2 ≤ K(x, x)K(y, y)

(v) The family (Kx)x∈X generates H.

The result (i) admits a converse due essentially to E.H. Moore [10]; namely,
for every positive definite kernel K there corresponds one and only one RKHS
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HK which admits K as a reproducing kernel. If H0 is a closed subspace of H,
then H0 is also a reproducing kernel Hilbert space with kernel defined by

Kx
0 (y) = P (Kx)(y) with y ∈ X

where P is the orthogonal projection from H onto H0.
The projection P is given by

P (f)(x) = (Kx
0 , f)H with f ∈ H [6].

Now let X be a topological space. A Mercer kernel K is a positive definite kernel
which is continuous. In this case, HK consists of continuous functions on X [11].
Let (X, d) be a compact metric space, let µ be a finite Borel measure on X and
let L2(X,µ) be the space of square integrable functions on X. If K is a Mercer
kernel then the operator LK on L2(X,µ) defined by

LKf(x) =

∫
X
K(x, y)f(y)dµ(y)

is compact, positive and symmetric [8]. It has at most countably many positive
eigenvalues {λi}∞i=1 and corresponding orthonormal eigenfunctions {Φi}∞i=1 [8].
Mercer’s theorem permits then to characterize the RKHSHK and the reproducing
kernel K in terms of spectral decomposition of the operator LK . Precisely, the
Mercer’s theorem [8] asserts that:

K(x, y) =
∞∑
i=1

λiΦi(x)Φi(y)

where the convergence is absolute and uniform on X×X. We achieve this section
with the notion of functional completion. Let (H1, ⟨., .⟩) be a pre-Hilbertian space
of real-valued functions defined on X (not necessarily a topological space). We
say that H is a functional completion of H1 if

• H is a vector space such that H1 ⊂ H

• H is equipped with an inner product ⟨., .⟩H such that (H, ⟨., .⟩H) is a Hilbert
space and for every x ∈ X the linear functional δxf = f(x) is continuous
on H.

The following lemma gives sufficient conditions for a pre-Hilbertian space
of functions to have a functional completion.

Lemma 1. ([1]) Let (H1, ⟨., .⟩) be a pre-Hilbert space of real-valued functions
defined on X. If
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• For every x ∈ X, the linear functional δxf = f(x) is bounded on H1

• For every Cauchy sequence (fn)n∈N of elements in H1, the condition
limn→+∞ fn(x) = 0 for all x ∈ X implies that lim

n→+∞
∥ fn ∥H1= 0 ,

then H1 admits a functional completion.

3. Limit of Reproducing Kernels Hilbert Spaces

In this section, we consider X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . . an increasing sequence

of metric compact spaces. We set X∞ =
+∞⋃
n=0

Xn and let µ be a non-degenerate

Borel measure on X∞. For each n ∈ N, we consider a Mercer kernel Kn on Xn.
We assume that for any n ∈ N, Kn is the restriction of Kn+1 to Xn ×Xn. For
all n ∈ N, let Hn be the reproducing kernel Hilbert space associated with Kn as
its reproducing kernel by Moore’s theorem [10].

Proposition 2. For all n ∈ N, the map Sn from Hn to Hn+1 defined by

Sn(f)(x) =

{
f(x) if x ∈ Xn

0 otherwise

is an isometric embedding.

Proof. Let f ∈ Hn. Since the family (Kx)x∈Xn generates Hn

then f =
∞∑
i=1

αiK
xi
n , with αi ∈ R, xi ∈ Xn for any i ∈ N. So according to Sn(f)’s

definition and restriction assumption on Kn’s, we have

Sn(f) =
∞∑
i=1

αiK
xi
n 1Xn =

∞∑
i=1

αiK
xi
n+11Xn

where 1A is the characteristic function of a set A. So Sn(f) ∈ Hn+1. Also, Sn is
clearly linear and injective. Now,

∥Sn(f)∥2Hn+1
= ⟨Sn(f), Sn(f)⟩Hn+1

= ⟨
∞∑
i=1

αiK
xi
n 1Xn ,

∞∑
j=1

αjK
xj
n 1Xn⟩Hn

= ⟨f, f⟩Hn = ∥f∥2Hn
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So Sn is an isometry. □
Then thanks to proposition 2, we can identify Hn to a closed subspace of Hn+1

and assume that
Hn ⊂ Hn+1 for all n ∈ N.
Let us designate by T∞ = {f : X∞ −→ R}, the set of real-valued functions
defined on X∞.

Remark 1. For any integer n, we can identify Hn to a subspace of T∞. In fact,
the map: Vn : Hn → T∞ defined by

Vn(f)(x) =

{
f(x) if x ∈ Xn

0 otherwise

is an embedding.

It follows from the remark 1 that we can assume for all n ∈ N, Hn ⊂ T∞.
We set H =

⋃+∞
n=0Hn and let us consider the map: ⟨, ⟩H : H ×H −→ R defined

by ⟨f, g⟩H = ⟨f, g⟩Hn if f, g ∈ Hn. It is clear that ⟨, ⟩H defines a scalar product
on H.

Theorem 1. The pre-Hilbert space (H, ⟨, ⟩H) admits a functional completion.

Proof. Let x ∈ X∞ and, let us consider the linear form δx defined on H by
δx(f) = f(x) for all f ∈ H. Let us show that δx is bounded. Since x ∈ X∞, then
there exists n0 ∈ N such that for any n ≥ n0, x ∈ Xn. Also f ∈ H implies that
there exists n1 ∈ N such that for any n ≥ n1, f ∈ Hn. Setting p = max{n0, n1},
we have Kx

p ∈ Hp, f ∈ Hp and

∥ Kx
p ∥Hp=

√
Kp(x, x) =

√
Kn0(x, x) =∥ Kx

n0
∥Hn0

since Kn0 = Kp|Xn0×Xn0
.

So

|δxf | = |f(x)| = |⟨f,Kx
p ⟩Hp |

≤∥ f ∥Hp∥ Kx
p ∥Hp

≤∥ f ∥Hp∥ Kx
n0

∥Hn0

≤∥ f ∥H∥ Kx
n0

∥H

and therefore δx is bounded on H .
It follows that we can assume for all n ∈ N, Hn ⊂ T∞.
We set H =

⋃+∞
n=0Hn and let us consider the map: ⟨, ⟩H : H ×H −→ R defined

by ⟨f, g⟩H = ⟨f, g⟩Hn if f, g ∈ Hn. It is clear that ⟨, ⟩H defines a scalar product
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on H. Suppose that (fp)p∈N is a Cauchy sequence of elements of H such that for
all x ∈ X∞, lim

p→+∞
fp(x) = 0. For all (p, q) ∈ N2, we have:

∥ fp ∥2H≤∥ fp − fq ∥2H +2|⟨fp, fq⟩H |

which implies

lim
p→+∞

∥ fp ∥H≤
√

lim
p→+∞

(∥ fp − fq ∥2H +2|⟨fp, fq⟩H |).

Now, fp ∈ H and fq ∈ H imply that there exists n(p,q) ∈ N such that fp ∈ Hn(p,q)

and fq ∈ Hn(p,q). It comes from proposition 1(v) that

fp =

∞∑
i=1

αi,pK
xi,p

n(p,q); fq =

∞∑
j=1

αj,qK
xj,q

n(p,q) with αi,p , αj,q ∈ R; xi,p, xj,q ∈ Xn(p,q).

Thus,

⟨fp, fq⟩H = ⟨
∞∑
i=1

αi,pK
xi,p

n(p,q),
∞∑
j=1

αj,qK
xj,q

n(p,q)⟩Hn(p,q)

=
∞∑
i=1

∞∑
j=1

αi,pαj,q⟨K
xi,p

n(p,q),K
xj,q

n(p,q)⟩Hn(p,q)

=

∞∑
i=1

∞∑
j=1

αi,pαj,qK
xi,p

n(p,q)(xj,q)

=

∞∑
i=1

∞∑
j=1

αi,pαj,qK
xi,p

n(p,q)(xj,q)

=

∞∑
j=1

αj,q

( ∞∑
i=1

αi,pK
xi,p

n(p,q)(xj,q)

)

=
∞∑
j=1

αj,qfp(xj,q)

It follows that

lim
p→+∞

⟨fp, fq⟩H = lim
p→+∞

∞∑
j=1

αj,qfp(xj,q)

=

∞∑
j=1

αj,q lim
p→+∞

fp(xj,q) = 0
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We also have limp→+∞
q→+∞

∥ fp − fq ∥H= 0 because (fn)n∈N is a Cauchy sequence

and subsequently, limp→+∞ ∥ fp ∥H= 0. Thanks to lemma 1., we deduce that H
admits a functional completion. □

We denote by H∞ the functional completion of H. The first part of previous
proof shows that H∞ is a reproducing kernel Hilbert space.
Consider the map: K∞ : X∞ × X∞ → R defined by K∞(x, y) = Kn(x, y) if
x, y ∈ Xn.

Theorem 2. We have

(i) K∞ is the reproducing kernel of H∞

(ii) K∞ is a Mercer’s kernel

Proof.

(i) H∞ is a reproducing kernel Hilbert space and denote by K
its reproducing kernel. Let x ∈ Xn0 and let f ∈ Hn0 for a fixed n0 ∈ N.
We have f(x) = ⟨f,Kx

n0
⟩Hn0

= ⟨f,Kx
n0
⟩H∞

But, since Xn0 ⊂ X∞ and f ∈ H∞, we have f(x) = ⟨f,Kx⟩H∞ .
So by the uniqueness of the reproducing function at one point, we deduce
that Kx = Kx

n0
. Now if x, y ∈ X∞, then there exists p ∈ N such that

x, y ∈ Xp and we have

K(x, y) = Kx(y) = Kx
p (y) = Kp(x, y) = K∞(x, y).

(ii) Since K∞ is the reproducing kernel of H∞ then K∞ is positive definite(see
Proposition 1.(i)). It is also clear that K∞ is continuous for the inductive
limit topology.

□

4. Mercer Theorem

Let µ be a non-degenerate bounded measure on X∞ and let L2(X∞, µ) be
the space of complex-valued square integrable functions on X∞. In this section,
we will assume that for all x ∈ X∞, ∥ Kx

∞ ∥L2(X∞)<∞.
Thus, for any f ∈ L2(X∞, µ), we have∫
X∞

|K∞(x, y)f(y)|dµ(y) ≤
(∫

X∞

|K∞(x, y)|2dµ(y)
)1/2(∫

X∞

|f(y)|2dµ(y)
)1/2
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≤∥ f ∥L2(X∞,µ)

(∫
X∞

|Kx
∞(y)|2dµ(y)

)1/2

<∞

For any f ∈ L2(X∞, µ) and for any x ∈ X∞, we set

LK∞f(x) =

∫
X∞

K∞(x, y)f(y)dµ(y)

We consider the sequence (Yn)n≥0 defined by Y0 = X0 and for all n ≥ 1,
Yn = Xn \Xn−1.
It is well-known that (Yn)n∈N is a disjoint sequence and for all n ∈ N

n⋃
k=0

Yk =

n⋃
k=0

Xk = Xn and X∞ =

∞⋃
n=0

Yn =

∞⋃
n=0

Xn.

Theorem 3. For any f ∈ L2(X∞, µ), LK∞(f) ∈ H∞.

Proof. Let x ∈ X∞ and f ∈ L2(X∞, µ), we have

LK∞f(x) =

∫
X∞

K∞(x, y)f(y)dµ(y)

=

∫
⋃∞

n=0 Yn

K∞(x, y)f(y)dµ(y)

=
∞∑
n=0

∫
Yn

K∞(x, y)f(y)dµ(y)

= lim
m→+∞

m∑
n=0

∫
Yn

K∞(x, y)f(y)dµ(y)

= lim
m→+∞

∫
⋃m

n=0 Yn

K∞(x, y)f(y)dµ(y)

= lim
m→+∞

∫
Xm

K∞(x, y)f(y)dµ(y)

where fm = f |Xm is the restriction of f to Xm.

For any x ∈ X∞ and m ∈ N, we define ϕm by ϕm(x) =

∫
Xm

K∞(x, y)f(y)dµ(y)

and set mx = inf{m ∈ N : x ∈ Xm}.
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Since (Xn)n≥0 is an increasing sequence then for any m ≥ mx, we have x ∈ Xm

and therefore

ϕm(x) =

∫
Xm

Km(x, y)f(y)dµ(y).

= LKmfm(x)

So for m ≥ mx, we have ϕm ∈ Hm. Since Hm ⊂ H for any m, then
limm→+∞ ϕm = LK∞(f) ∈ H = H∞ □

Let us consider for any m ∈ N, the map Γm : L2(Xm, µm) → L2(X∞, µ)
defined by

Γm(ϕ)(x) =

{
ϕ(x) if x ∈ Xm

0 otherwise

where µm is the restriction of µ to Xm.

Theorem 4. For any m ∈ N, Γm is an isometric embedding.

Proof. Γm is clearly linear and injective. Let ϕ ∈ L2(Xm, µm).

∥Γm(ϕ)∥2L2(X∞,µ) =

∫
X∞

|Γm(ϕ)(x)|2dµ(x).

=

∫
Xm

|Γm(ϕ)(x)|2dµ(x) +
∫
X∞\Xm

|Γm(ϕ)(x)|2dµ(x)

=

∫
Xm

|ϕ(x)|2dµ(x)

= ∥ϕ∥2L2(Xm,µm)

So Γm is an isometry. □

For sufficiently large m, ϕm as defined in the proof of theorem 3. lies in
L2(Xm, µm) and using the theorem 4., we can consider for sufficiently large m,
ϕm as an element of L2(X∞, µ).

Theorem 5. LK∞(f) ∈ L2(X∞, µ) for any f ∈ L2(X∞, µ).

Proof. For p, q ∈ N
ϕp =

∫
Xp

Ky
∞f(y)dµ(y) and ϕq =

∫
Xq

Kt
∞f(t)dµ(t) as defined in the proof of

theorem 3. For p and q sufficiently large, we have

lim
p→+∞

⟨ϕp, ϕp⟩L2(X∞,µ) = lim
p→+∞

⟨
∫
Xp

Ky
∞f(y)dµ(y),

∫
Xp

Kt
∞f(t)dµ(t)⟩L2(X∞,µ)
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= ⟨ lim
p→+∞

∫
Xp

Ky
∞f(y)dµ(y), lim

p→+∞

∫
Xp

Kt
∞f(t)dµ(t)⟩L2(X∞,µ)

= ⟨LK∞(f), LK∞(f)⟩L2(X∞,µ)

= ∥LK∞(f) ∥2L2(X∞,µ)

and

lim
p,q→+∞

⟨ϕp, ϕq⟩L2(X∞,µ) = lim
p,q→+∞

⟨
∫
Xp

Ky
∞f(y)dµ(y),

∫
Xq

Kt
∞f(t)dµ(t)⟩L2(X∞,µ)

= ⟨ lim
p→+∞

∫
Xp

Ky
∞f(y)dµ(y), lim

q→+∞

∫
Xq

Kt
∞f(t)dµ(t)⟩L2(X∞,µ)

= ⟨LK∞(f), LK∞(f)⟩L2(X∞,µ)

= ∥LK∞(f) ∥2L2(X∞,µ)

Thus

lim
p,q→+∞

∥ ϕp − ϕq ∥2L2(X∞,µ) = lim
p,q→+∞

(⟨ϕp, ϕP ⟩L2(X∞,µ) − 2⟨ϕp, ϕq⟩L2(X∞,µ) + ⟨ϕq, ϕq⟩L2(X∞,µ))

= ∥LK∞(f) ∥2L2(X∞,µ) −2∥LK∞,µ(f) ∥2L2(X∞,µ) +∥LK∞(f) ∥2L2(X∞,µ)= 0

So (ϕm)m∈N is a Cauchy sequence in L2(X∞, µ) which converges to LK∞f
(see the proof of theorem 3.). Consequently, LK∞f ∈ L2(X∞, µ). □

Theorem 6. For any f ∈ L2(X∞, µ) and for any h ∈ L2(X∞, µ) ∩H∞
we have ⟨LK∞(f), h⟩H∞ = ⟨f, h⟩L2(X∞,µ)

Proof. Let h ∈ L2(X∞, µ) ∩H∞

⟨LK∞(f), h⟩H∞ = ⟨
∫
X∞

Ky
∞f(y)dµ(y), h⟩H∞

=

∫
X∞

f(y)⟨Ky
∞, h⟩H∞dµ(y)

=

∫
X∞

f(y)h(y)dµ(y)

= ⟨f, h⟩L2(X∞,µ)

□
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Theorem 7. LK∞ is a positive and self-adjoint operator .

Proof.

⟨LK∞(f), g⟩L2(X∞,µ) =

∫
X∞

LK∞(f)(x)g(x)dµ(x)

=

∫
X∞

(∫
X∞

K∞(x, y)f(y)dµ(y)

)
g(x)dµ(x)

=

∫
X∞

(∫
X∞

K∞(y, x)g(x)dµ(x)

)
f(y)dµ(y)

=

∫
X∞

LK∞(g)(y)f(y)dµ(y)

= ⟨f, LK∞(g)⟩L2(X∞,µ)

then LK∞ is self-adjoint. Let f ∈ L2(X∞, µ).

⟨LK∞f, f⟩L2(X∞,µ) =

∫
X∞

LK∞(f)(x)f(x)dµ(x)

=

∫
X∞

(∫
X∞

K∞(x, y)f(y)dµ(y)

)
f(x)dµ(x)

=

∫
X∞

∫
X∞

K∞(x, y)f(y)f(x)dµ(y)dµ(x) ≥ 0

since K∞ is a positive-type function. We deduce that LK∞ is positive. □

LK∞ is a self-adjoint and positive operator, so LK∞ has positive eigenvalues
(λk)k∈N and the associated eigenfunctions (ψk)k∈N form an orthogonal system.
By dividing each vector by its norm, we can assume that the system (ψk)k∈N is
orthonormal.

Theorem 8. ( Mercer’s type theorem)
For all x, y ∈ X∞ there exists n ∈ N such that

K∞(x, y) =
∑
k≥1

λkPnψk(x)Pnψk(y)

where the convergence is absolute and uniform on Xn ×Xn and Pn is
the orthogonal projection from H∞ onto Hn.

Proof. According to remark 1., for each n ∈ N, Hn is a subspace of H∞.
Recall that Pn is defined by (see [6])

Pnf(x) = ⟨Kx
n, f⟩H∞
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for f ∈ H∞ and x ∈ X∞. We have on one hand

Pn(LK∞ψk) = Pn(λkψk) = λkPn(ψk)

and on the other hand for x ∈ Xn

Pn(LK∞ψk)(x) = ⟨Kx
n, LK∞ψk⟩H∞

= ⟨Kx
n, ψk⟩L2(X∞)

= ⟨Pn(K
x
n), ψk⟩L2(X∞)

= ⟨Kx
n, Pnψk⟩L2(X∞)

= LKn(Pnψk)(x)

where the second equality is due to theorem 6. and LK∞ψk ∈ H∞ according to
theorem 3. It follows that LKn(Pnψk)(x) = λkPn(ψk)(x) for any x ∈ Xn that is
Pnψk is an eigenvector for the operator LKn . It is also clear that an eigenvector
Φ of LKn is an eigenvector of LK∞ as a function in L2(X∞, µ) and PnΦ = Φ.
So, (Pnψk)k∈N is a family of eigenvectors for the operator LKn . Using the classical
Mercer’s theorem on compact domain we have

Kn(x, y) =
∑
k≥1

λkPnψk(x)Pnψk(y),

where the convergence is absolute and uniform on Xn ×Xn. Now for x, y ∈ X∞
there exists n ∈ N such that x, y ∈ Xn andK∞(x, y) = Kn(x, y) and consequently
we have

K∞(x, y) =
∑
k≥1

λkPnψk(x)Pnψk(y)

□
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E-mail: toure.ibrahima@ufhb.edu.ci

Received 10 January 2025
Accepted 22 August 2025


