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Fractional maximal function in total Morrey-Guliyev
spaces for the Dunkl operator on the real line
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Abstract. On the real line, the Dunkl operators D, are differential-difference operators asso-
ciated with the reflection group Zs on R. In the paper, in the setting , we study the fractional
maximal operator associated with the Dunkl operator M, , in the total Morrey-Guliyev spaces
Ly (R, dm,). We give necessary and sufficient conditions for the boundedness of the operator
M, on total D,-Morrey-Guliyev spaces Ly x (R, dm,).

Key Words and Phrases: Fractional maximal operator; total D,-Morrey-Guliyev space;
Dunkl operator.

2010 Mathematics Subject Classifications: 42B20, 42B25, 42B35

1. Introduction

Morrey spaces, introduced by Morrey [26], play an important role in the regularity
theory of PDE, including heat equations and Navier-Stokes equations. In harmonic
analysis, Morrey spaces are crucial for analyzing the behavior of integral operators and
providing conditions for the global existence of solutions to nonlinear PDEs, such as
the Schrédinger equation. The total Morrey-Guliyev spaces Ly, y ,(R™), introduced by
Guliyev [14], extend the Morrey space Ly »(R™) by including the second parameter ,
which can be seen as the intermediate spaces between Lebesgue spaces and Morrey
spaces. The norm in these spaces is defined by a combination of the norms of L, (R")
and Ly ,(R™), which allows a wider range of behavior. Let 0 < p < oo, A € R, pu € R,
[t]i = min{1,t¢}, ¢ > 0. The total Morrey-Guliyev spaces Ly, » ,(R") are the set of all
locally integrable functions f with the finite (quasi-)norm

A 1z
1z, s, = sup [ty " (/87 [ fllz, 8@
z€R™, >0
where B(x,t) denotes the ball centered at x with radius ¢ > 0. Here the norm in the
case ;1 < A is equal to the maximum of the norms of L, (R") and L, ,(R"). Total
Morrey-Guliyev spaces can be viewed as generalizations of both classical and modified
Morrey spaces. In particular, the case where A = u corresponds to classical Morrey
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space, and the case where y = 0 corresponds to modified Morrey space zp,,\(R”), see
[T, 13, 4, 6, 17, 8, 9], (10, (18], 241, BT, 32, 33].

On the real line, the Dunkl operators A, are differential-difference operators intro-
duced in 1989 by Dunkl [15]. For a real parameter v > —1/2, we consider the Dunkl
operator, associated with the reflection group 2 on R :

) f(&) ()
dz 2x ’

D, (f)(x) : z €R.

+2rv+1)
Note that D_ /o = d/dx.
Let v > —1/2 be a fixed number and m, be the weighted Lebesque measure on R,
given by
dmy(z) == (2" T(v + 1))_1 lz[* T dx, x€R.

For any z € R and r > 0, let B(z,7) :== {y € R : |y| €] max{0, |z| — r},|z| + 7] }
be a Dunkl-ball in R. Then B(0,7) =] — r,r[ and m,B(0,7) = ¢, 7?**2, where ¢, :=
(2 (v + )T (w+1)]

The maximal operator M, associated by Dunkl operator on the real line is given by

M, f(@) = sup (mu(Bar) ™ [ ), @ e

r>0

and fractional mazimal operator M, ,, 0 < oo < 2v 4 2 associated by Dunkl operator on
the real line is given by

Mo f(x) = sup (my B(z, )55 /B @l <R

r>0

It is well known that maximal and fractional maximal operators play an impor-
tant role in harmonic analysis (see [36]). Also the fractional maximal function and
the fractional integral, associated with D, differential-difference Dunkl operators play
an important role in Dunkl harmonic analysis, differentiation theory and PDE’s. The
harmonic analysis of the one-dimensional Dunkl operator and Dunkl transform was de-
veloped in [IT], [12], 23], 25]. The Dunkl operator and Dunkl transform considered here are
the rank-one case of the general Dunkl theory, which is associated with a finite reflection
group acting on a Euclidean space. The Dunkl theory provides a useful framework for
the study of multivariable analytic structures and has gained considerable interest in
various fields of mathematics and in physical applications (see, for example, [16]). The
maximal function, the fractional integral and related topics associated with the Dunkl
differential-difference operator have been research areas for many mathematicians such
as C. Abdelkefi and M. Sifi [2], V.S. Guliyev and Y.Y. Mammadov [11], 12, 13], Y.Y.
Mammadov [20], L. Kamoun [I7], M.A. Mourou [27], F. Soltani [34], [35], K. Trimeche
[37] and others. Moreover, the results on Lg(R, dm, )-boundedness of fractional maximal
operator and its commutators associated with D, were obtained in [13] 21].

It is well known that maximal operator play an important role in harmonic anal-
ysis (see [36]). Harmonic analysis associated to the Dunkl transform and the Dunkl
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differential-difference operator gives rise to convolutions with a relevant generalized
translation. In this paper, in the framework of this analysis in the setting R, we study
the boundedness of the fractional maximal operator M, , on total D,-Morrey-Guliyev
spaces Ly » (R, dm,,).

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B
are equivalent.

2. Preliminaries in the Dunkl setting on R

Definition 1. Let 0 < p < oo, A € R, p € R, [t]; = min{l,t}, ¢ > 0. We denote
by Ly A(R,dm,) the Morrey space [28] (= D,-Morrey space), by Ep’/\(R, dm,) the mod-
ified Morrey space [28] (= modified D, -Morrey space), and by Ly (R, dm,) the total
Morrey-Guliyev space [29] (= total D, -Morrey-Guliyev space), associated with the Dunkl
operator the set of all classes of locally integrable functions f with the finite norms

_a
1 fl, s (Rdm,) = SUP t # | fllL,(Ba.t),dm.)
z€R, >0
A
~ — p
IFIE, \ Rdm,) = x;&};o[th I £11 2, (Bat) dmn)s
A
[fll 2y, Ram,y = sup [ty " L/ (||, (B(xt).dm.)
z€R™ t>0

respectively.

Definition 2. Let 0 < p < o0, A € R and p € R. We define the weak Morrey
space Ly A(R,dm,) [28] (= weak D,-Morrey space), the weak modified Morrey space
Ep,,\(]R,dmy) [28] (= weak modified D,-Morrey space), and the weak total Morrey-
Guliyev space Ly » (R, dm,) [29] (= weak total D,-Morrey-Guliyev space), associated
with the Dunkl operator the set of all classes of locally integrable functions f with the

finite norms

_a
[ fllwrys®dm,) = sup 7 ([ fllwr,(Bt).dm,):
z€R,t>0
A
Wz, dm,) = xeﬁélgo[th "N llw L, (B.t).dm)s
_A y
1fllwer,a, ®dm,) = xe]}s&g%w[th "L N FIw Ly (Ba,t)sdm) s

respectively.
Lemma 1. [22 [30] If 0 <p <00, 0 < u < A<2v+2, then
Lpau(R, dmy) = Ly \(R, dmy) 0 Ly u(R, dmy,)

and
11y np onsy = 1025 {1y st 1 g s}
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Lemma 2. [22 (30 If 0 < p <00, 0 < u < A <2v+2, then

W Ly (R, dm,) = WL, (R, dmy) N WL, (R, dm,)

and
1w 2y 0 sy = 0985 {0 2 s I WLy Bt -

Remark 1. If0 <p < oo, and A > 2v + 2 or p <0, then
Ly u(R,dmy,) = WLy (R, dm,) = O(R),
where © = O(R) is the set of all functions equivalent to 0 on R.
Lemma 3. [27 If0<p<o0,0< A< A <20 +2and 0 < py < po <2v+ 2, then
Lpx (R, dmy,) Co Ly x, 0 (R, dm,,)

and

I 2 gy ®om) S WLy 5 (R -
Lemma 4. [22] I[f0<p<o0, 0 < A<2v+2 and 0 < p < 2v+ 2, then
Lp,21/+2,,u(Ra di) Cx Loo(Ra dmu) Cs Lp,)\,21/+2(R7 dmu)

and

[F 2y 20 s Radmy) < Ci/p”fHLoo(R,dmy) <Ly 2 so, ® dm)-

Lemma 5. [22 If 0 < A < 2v+2, 0 < p<2v+2,0< a<2v+2-—X and
0<B<20+2—p, thenfor%ﬁpﬁ%

Ly, (R,dmy) Cy Lioyio—a2v+2-8(R,dmy)
and for f € Ly u(R,dm,) the following inequality

/
1220 s2a oo s (Radmy) < ci? £l 2y (R

15 valid.

3. Fractional maximal operator M, , in total D,-Morrey-Guliyev
spaces L, ,(R,dm,)

In this section, we investigate the boundedness of the fractional maximal operator
M, in total D,-Morrey-Guliyev spaces Ly » (R, dm,).
The following Guliyev type local estimates are valid (see also [5]).
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1 _ «a
q ~— 2v+2

Lemma 6. Let 0 < a < 2v+2,1 <p< %, % and B(xz,r) be any
Dunkl-ball in R. If p > 1, then the inequality
< 2vt2 —2v—24«
||Ma7Vf||Lq(B(x,r),dml,) ~ HfHLp(ZB,di) +roa tsu2pt HfHL1(B(x,t),dml,) (1)
>2r

holds for all f € L;OC(R, dm,).
Moreover if p =1, then the inequality

2v42 oy
||Ma,Vf||WLq(B(ac,r),dmy) = HfHLl(QB,di) +r o« tS;lth 2 2+a||f||L1(B(gc,t),dm) (2)
T

holds for all f € LY¢(R,dm,).

Proof. Let 0 <a<2v+2,1<p< %, 1_ % = 5,45 For arbitrary Dunkl-ball

B = B(xz,r) let f = f1 + f2, where fi = fxop and fo = fXD(QB)'

M fllL,(B.dmy) < Mawfilln,B.dm,) + [Mawfolln,8,dm,)-

[0

By the continuity of the operator M, , : L,(R,dm,) — L(R, dm,), % — % = 503

for example, [28]) we have

(see,

Mo fillLy(B.dm,) S Iy 2B,dm.)-

Let y be an arbitrary point from B. If B(y,7) N l3(2]9) # (0, then 7 > r. Indeed, if
z € B(y,7)N E(QB),thenT> ly—z|>|e—z|—|z—y|>2r—r=r.

On the other hand, B(y,7) N E(QB) C B(z,27). Indeed, z € B(y,7) N B(QB), then
we get |z —z| <|ly—z|+|z—y|<T4+r<2r

Hence

1
Mo, fa(y) = sup = / f(z)|dm,(z
) 70 my (B(y, 7)) 2% B(yw)ﬂ“(w)' Pl 2)
1

< 9WHIma gup - / f(2)|dmy(z
- m>r my, (B(z,27)) w2 B(z,zT)| (&)] dmu(2)

1

= 22F2=a gup - / f(2)|dmy,(2).
>2r ml,(B(gﬂ,T))l_m B(z,r)| 2 =)

Therefore, for all y € B we have

1% — 1
Mauhily) <200 sip s [ 1@l i) Q

Applying Holder’s inequality, we get

Mo fo(y) < sup L / )P dm(2). (4)
T>2r m,,(B(ac,T))P 2v+2 J B(z,T)
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Thus

1Mo Sl LyBdm,) S 1L, @B.dm.)

(B, 7)) ((sup S [ WG ).

T>2r mV(B(x’ T));_m

Let p = 1. It is obvious that for any ball B = B(z, )

Mo fllwiryB.dm,) < 1Mo fillwr,Bdm,) + [Mawf2llwLyB,dm.)-

By the continuity of the operator M, : L1(R,dm,) = W Ly(R,dm,) we have

Mo fillwr,(B,dm.) S fILy 2B dm.)-

Then by we get the inequality .

% = 55 and B(z,r) be any

Lemma 7. Let 0 < o < 2vr+2,1 <p< %7
Dunkl-ball in R. If p > 1, then the inequality

1
p

2v+2
HMoc ufHLq (z,r),dmy) 5 T tSU2pt Hf”Lp B(z,t),dmy) (5)
>2r

holds for all f € L}DOC(]R, dm,).
Moreover if p =1, then the inequality

2v+42

2v+2
HManyHWLq(B(x,r),dmy) 5 o HfHLl B(z,t),dm.) (6)
t>2r

holds for all f € LY°(R,dm,).

1 _

1 «a
v p T 7= i Denote

Proof. 0<a<2v+2,1<p< 22

Ay = m (Bla, )7 ((sup my(B(x’i));_Q;H [ 1FEldm)

Az = |fllz,2B.dm.)-

Applying Holder’s inequality, we get

S

A S mBle )t (sup ey [ dm(2)

On the other hand,
1 1 N
muBla )t (sup [ [pe)P dm(2)
m™>2r m,, (B(z, 1)) JB(z,T)

2 ) (sp o

V11 2y 25 dma)-

Q=
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Since by Lemma [0]

Mo fllLy(B.dm,) S A1+ Az,

we arrive at .
Let p = 1. Inequality (@ directly follows from .

The following Spanne’s type result completely characterizes the boundedness of M, ,
on total D,-Morrey-Guliyev spaces Ly » (R, dm,).

Theorem 1. Let 0 < a<2v+2,0< \,u<2v+2,1<p< min{%,%}, and
1 1 o

p q = 2v+2-°
1. If f € L1 u(R,dm,), then My, f € WL, (R,dm,) and

[Ma,w fllWLy g ua®dmn) < Crap 1 fllLy s, ®dm,)s (7)

where Cy » , 1s independent of f.
2. If f € Lpxpu(R,dm,), 1 <p < oo, then My f € Ly (R, dm,) and
IMapflL sy g ®dmn) < Cpgau fllL, R dmo)s (8)
“p

where Cp » , depends only on p,A\,pu and v.

Proof. Let p = 1. From the inequality @ we get

A
1Mo FlwL, ag g ®dmyy = Sup [t [1/8) (1Mo fllw Ly (Ba,t).dm,)
z€R™, t>0

2v+2 __2v+2
o sup7 ¢ | fllLy(Ba,r)dm.)
T>2t

S sup [M[1/d4
zeR™,t>0

S WAL @ dmy) sup O[tJIA [L/4]f ekt Sl;lgfo‘””” (72 (/=)
TxER™ > T

_ - —20—2 —2p— —a+2v+2—
= 1 p s,y sUp (7T FEAL/TTT T sup [r)p AR (1 ]
zER™, >0 >t

Sz ®dm,)

which implies that the operator M, is bounded from Ly ) ,(R, dm,) to WLy (R, dm,).
Let 1 <p< min{%, %} From the inequality we get

2 ©
HMoc,ufHLq Ag pq (Rdmy) = sup [t]l ! [1/t]1p HMa,ufHLq(B(z,t),dmy)

DD zeR™ t>0
_A Eooy49 _2u42
S osup [t P/ttt e supT o [|f]lL, (B
IER",t>0 T>2t
-3 b 22 —we2 %
Sz, s, ®dm,y  sup [ty P 1/t ¢ a supr o [7]] [1/7];
TER™, >0 >t
20422 L2042 A—2v42 w2—p

=flle,\,®dm,) sup [ty * [L/ty * suplr]y * [l/7]; 7
Z€R™, t>0 >t
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Sz, a . ®dm)

which implies that the operator M, , is bounded from L, » ,(R,dm,) to Ly .(R, dm,).

From Theorem [I|in the case A =y or u = 0 we get the following corollaries.

Corollary 1. [2 19, (3] Let 0 < a < 20 +2, 0 < A < 20 +2, 1 < p < ZEZ2A g
1_1_ a

q  2v42°
1. If f € L1 x(R,dmy,), then My, f € WLy A(R,dm,) and

Mo, fllwr, »®dm,) < Con 1Ly 5 ®dm)s

where Cy \ 1s independent of f.
2. If f € Ly x(R,dm,,), p > 1, then My, f € Lg(R,dm,) and

Mo fllL, s ®dm) < Coax 1FllL, »®.dm.)s

where Cp 4\ depends only on p, q, A and v.

Corollary 2. [20] Let 0 < a < 2v+42,0 < A <2042, 1 <p< %, and %—% = g3
1. If f € Lyz(R,dm,), then My, f € WL A(R,dm,) and

||Ma,VfHWZq’A(R7di) < Cq)\ |f||zl’>\(R,dml,)’

where C ) 1is independent of f. , 2. If f € Zp’A(]R,dmy), p > 1, then My, f €
Ly (R, dm,) and
HMa’VfHEq,A(R,dmu) < Cpgn HfHZp,A(Rdmu)’

where Cp 4\ depends only on p, q, A and v.

Remark 2. Note that in the case of the multidimensional Dunkl setting, the main results
of this paper were proved in [23].
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