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Abstract. The article considers the Dirac system under some boundary conditions, one
of which linearly contains the spectral parameter. The statement is given, the unique-
ness theorem is proved, and an algorithm for solving the inverse problem of recovering
boundary value problems from two spectra is constructed.
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1. Introduction

The development of the theory of inverse problems, starting from the middle
of the last century, was stimulated by its numerous applications in natural sci-
ences and various fields of natural science and engineering. One of the important
classes of inverse spectral problems consists of problems of reconstruction of sys-
tems of differential equations from spectral data. Inverse problems related to the
canonical Dirac system have been studied by many authors. The first work de-
voted to reconstruction of the Dirac system on an interval from two spectra is the
article [1]. Here the authors developed a constructive solution based on transfor-
mation operators and obtained a characterization of the spectral data. Similar
results for the Dirac operator with summable potential, small delay and sepa-
rated boundary conditions were established in [2-3]. In the case of non-separated
(including periodic, antiperiodic, quasiperiodic and generalized periodic) bound-
ary conditions, some versions of inverse problems are completely solved in [4-8],
where the recovery of the Dirac operator is mainly carried out from two and
three spectra and some sequence of signs. There are several works devoted to
the non-self-adjoint case (see [9] and the literature therein). Note that in [10-14],
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direct and inverse problems for systems of differential equations with a spectral
parameter in separated and non-separated boundary conditions are investigated.

In this paper, the canonical Dirac system is considered under some boundary
conditions, one of which contains a spectral parameter. Some spectral proper-
ties of boundary value problems are studied, a statement is given, a uniqueness
theorem is proved, an algorithm for solving the inverse problem of reconstruct-
ing boundary value problems from spectral data, which are the spectra of two
boundary value problems, is compiled.

2. Some spectral properties of the problem

The one-dimensional stationary Dirac system (associated with the behavior
of a relativistic electron in an electrostatic field) has the following canonical form
(see [1]):

BY ′ (x) +Q (x)Y (x) = λY (x) , (1)

where

B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
, Y (x) =

(
y1(x)
y2(x)

)
.

Assume that the elements p(x) and q(x) matrices Q(x) in (1) are real functions
belonging to the space W 1

2 [0, π] . By W 1
2 [0, π] we denote the space consisting of

absolutely continuous functions defined on a segment [0, π] that have a derivative
that is summable with the square of [0, π]. Consider a boundary value problem
generated on a segment [0, π] by the Dirac equation (1) and boundary conditions
of the form

y1 (0) = 0,
y2 (0)− λ [d1y1 (π) + d2y2 (π)] = 0,

(2)

where λ is the spectral parameter, d1 and d2 are positive numbers. We will denote
this problem by D.

It is clear that the boundary value problem D always has a trivial solution

Y (x) =

(
0
0

)
.

Definition. If for some λ = λ0 there exists a nontrivial solution of equation
(1) satisfying the boundary conditions (2), then such a number λ0 is called an
eigenvalue, and the corresponding solution is called an eigenvector function of
the boundary value problem D. The set of eigenvalues is called the spectrum D.

Let S(x, λ) =

(
s1(x, λ)
s2(x, λ)

)
and C(x, λ) =

(
c1(x, λ)
c2(x, λ)

)
be solutions of

equation (1) satisfying the initial conditions S(0, λ) =

(
0
1

)
, C(0, λ) =

(
1
0

)
.
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Then it is easily established that the characteristic function, whose zeros are the
eigenvalues of the boundary value problem D, has the form

∆(λ) = 1− λ [d1s1 (π, λ) + d2s2 (π, λ)] . (3)

Lemma [13]. For functions s1 (π, λ), s2 (π, λ) the following representations
hold:

s1 (π, λ) = − sinλπ +A1
cosλπ

λ
+B1

sinλπ

λ
+
ψ1 (λ)

λ
,

s2 (π, λ) = cosλπ +A2
sinλπ

λ
+B2

cosλπ

λ
+
ψ2 (λ)

λ
,

where A1 = A+Q1, A2 = A+Q2,A = 1
2

∫ π
0

[
p2 (x) + q2 (x)

]
dx,

Q1 =
q (π)− q (0)

2
, Q2 = −q (π) + q (0)

2
,

B1 = −p (0) + p (π)

2
, B2 =

p (0)− p (π)

2
,

ψj (λ) =

∫ π

−π
ψ̃j (t) e

iλtdt, ψ̃j (t) ∈ L2 [−π, π] , j = 1, 2.

Theorem 1. The eigenvalues of the boundary value problem for satisfy the
asymptotic formula

µk = k + a+
A

πk
+

(−1)k+1
√
d21 + d22 +Q1d

2
1 +Q2d

2
2 − p (π) d1d2

π
(
d21 + d22

)
k

+
γk
k
, (4)

where a = 1
πarctg

d2
d1
, A = 1

2

∫ π
0

[
p2 (x) + q2 (x)

]
dx, {γk} ∈ l2.

Proof. Taking into account the representations of the functions s1 (π, λ),
s2 (π, λ) in the lemma, the characteristic function (3) can be transformed to the
form

∆(λ) = 1 + λ (d1 sinλπ − d2 cosλπ)− (d1A1 + d2B2) cosλπ−
− (d1B1 + d2A2) sinλπ + ψ3 (λ) ,

(5)

where ψ3 (λ) =
∫ π
−π ψ̃3 (t) e

iλtdt, ψ̃3 (t) ∈ L2 [−π, π]. Using the estimate ψ (λ) = 0(
e|Imλπ|) (for |λ| → ∞) and Rouché’s theorem, it is easy to establish that the
zeros of function (5) form a sequence of the form

µk = k +
1

π
arctg

d2
d1

+ εk, (6)
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where εk = o (1) at |k| → ∞. Substituting the right side of equality (6) into (5)
and taking into account that ∆(µk) = 0, after elementary transformations we
obtain

εk =
(d1A1 + d2B2) cosπa+ (d1B1 + d2A2) sinπa+ (−1)k+1

π(d1 cosπa+ d2 sinπa)k
+
γk
k
.

Using the equalities

cosπa = cos

(
arctg

d2
d1

)
=

1√
1 +

(
d2
d1

)2
=

d1√
d21 + d22

,

sinπa = sin

(
arctg

d2
d1

)
=

1√
1 +

(
d1
d2

)2
=

d2√
d21 + d22

,

we have

εk =
A

πk
+

(−1)k+1
√
d21 + d22 +Q1d

2
1 +Q2d

2
2 − p (π) d1d2

π
(
d21 + d22

)
k

+
γk
k
.

Substituting this asymptotics into (6), we arrive at equality (5). The theorem is
proven.

In what follows, we will assume that p (0) = p (π) = q (0) = q (π) = 0.
Theorem 2. The assignment of the spectrum {µk} (k = ±0, ±1, ±2, ...)

uniquely determines the characteristic function ∆(λ) of the boundary value prob-
lem D according to the formula

∆ (λ) = π
√
d21 + d22 (µ−0 − λ) (µ+0 − λ)

∞∏
k = −∞
k ̸= 0

µk − λ

k
, (7)

where √
d21 + d22 =

1

π lim
k→∞

k (µ2k+1 − µ2k − 1)
.

This theorem is proved similarly to Theorem 2 of [15].
Along with the boundary value problem D, the boundary value problem D̃

generated by the same equation (1) and boundary conditions is also considered

y1 (0) = 0,

y2 (0)− λ
[
d̃1y1 (π) + d̃2y2 (π)

]
= 0.

(8)
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In view of (3), the characteristic function of the problem D̃ will have the form

∆(λ) = 1− λ
[
d̃1s1 (π, λ) + d̃2s2 (π, λ)

]
. (9)

The spectrum of this problem will be denoted by {µ̃k}.

3. Statement of the inverse problem. Uniqueness theorem.
Solution algorithm

Consider the following inverse problem.
Inverse problem. Given the spectra of boundary value problems D and D̃

construct a matrix function Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
in the Dirac equation (1)

and coefficients d1, d2, d̃1 and d̃2 in the boundary conditions (2) and (8).
The following uniqueness theorem is true.
Theorem 3. If lim

k→∞
(µk − µ̃k) ̸= 0, then the assignment of spectra {µk} ,

{µ̃k} uniquely determines the boundary value problems D and D̃.
Proof. According to Theorem 1, the eigenvalues µk and µ̃k(k = ±0,±1,±2, ...)

of the boundary value problems D and D̃at |k| → ∞ satisfy the asymptotic
formulas

µk = k + a+
A

πk
+

(−1)k+1√
d21 + d22π k

+
γk
k
, (10)

µ̃k = k + ã+
A

πk
+

(−1)k+1√
d̃21 + d̃22π k

+
γ̃k
k
, (11)

where ã = 1
πarctg

d̃1
d̃2
, {γ̃k} ∈ l2 (since p (π) = Q1 = Q2 = 0). Then

µ2k+1 = 2k + 1 + a+
A

π(2k + 1)
+

1√
d21 + d22π (2k + 1)

+
γ2k+1

2k + 1
,

µ2k = 2k + a+
A

2πk
− 1

2
√
d21 + d22π k

+
γ2k
2k

,

µ̃2k+1 = 2k + 1 + ã+
A

(2k + 1)π
+

1√
d̃21 + d̃22π (2k + 1)

+
γ̃2k+1

2k + 1
,

µ̃2k = 2k + ã+
A

2πk
− 1

2
√
d̃21 + d̃22π k

+
γ̃2k
2k

.
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From here√
d21 + d22 =

1

π lim
k→∞

k (µ2k+1 − µ2k − 1)
,

√
d̃21 + d̃22 =

1

π lim
k→∞

k (µ̃2k+1 − µ̃2k − 1)
.

(12)
By virtue of Theorem 2, given sequences {µk} and {µ̃k}, it is possible to recon-
struct the characteristic functions ∆ (λ) and ∆̃ (λ) of boundary value problems
D and D̃ in the form of an infinite product using formulas (7) and

∆̃ (λ) = π

√
d̃21 + d̃22 (µ̃−0 − λ) (µ̃+0 − λ)

∞∏
k = −∞
k ̸= 0

µ̃k − λ

k
. (13)

According to the presentation (5)

∆ (2k) = 1− 2kd2 −Ad1 + ψ3 (2k) ,

∆

(
2k +

1

2

)
= 1 +

(
2k +

1

2

)
d1 −Ad2 + ψ3

(
2k +

1

2

)
.

Hence

d1 = 2 lim
k→∞

∆
(
2k + 1

2

)
4k + 1

, d2 = − lim
k→∞

∆(2k)

2k
, (14)

since by virtue of the Riemann-Lebesgue lemma lim
k→∞

ψ3 (2k) =

lim
k→∞

ψ3

(
2k + 1

2

)
= 0. Similarly

d̃1 = − lim
k→∞

∆̃ (2k)

2k
, d̃2 = 2 lim

k→∞

∆̃
(
2k + 1

2

)
4k + 1

. (15)

It follows from the condition of the theorem that a− ã ̸= 0 or arctg d1
d2

̸= arctg d̃1
d̃2
.

So, d1d̃2− d̃1d2 ̸= 0. This means that the determinant of the system of equations
d1s1(π, λ) + d2s2(π, λ) =

1−∆(λ)
λ ,

d̃1s1(π, λ) + d̃2s2(π, λ) =
1−∆̃(λ)

λ

(16)

(obtained from relations (3) and (9)) with respect to the unknowns s1(π, λ) and
s2(π, λ) are not equal to zero, that is, this system has a unique solution. Solving
system (16), we uniquely find the functions s1(π, λ) and s2(π, λ). It is easy to see
that these functions are characteristic functions of the boundary value problems
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generated by equation (1) and the boundary conditions y1 (0) = y1 (π) = 0 and
y1 (0) = y2 (π) = 0. It is known [1, 4] that the coefficient Q(x) of the Dirac
equation (1) is uniquely determined from the sequences of zeros of these functions.

Thus, from the given spectra {µk} and {µ̃k} the boundary value problems D
and D̃ are completely reconstructed. The theorem is proved.

According to the proof of Theorem 3, the solution to the inverse problem can
be obtained using the following algorithm.

Algorithm. Given are sequences {µk} and {µ̃k}– spectra of boundary value
problems D and D̃.

Step 1. Using (10) and (11), we calculate the quantities
√
d21 + d22,

√
d̃21 + d̃22

by formulas (12).
Step 2. From the sequences {µk} and {µ̃k}, we construct the characteristic

functions ∆ (λ) and ∆̃ (λ) in the form of an infinite product (7) and (13).
Step 3. We determine the coefficients d1, d2, d̃1 and d̃2 in the boundary

conditions by formulas (14) and (15).
Step 4. Solving system (16), we uniquely find the functions s1 (π, λ) and

s2 (π, λ).
Step 5. From the sequences of zeros of the functions s1 (π, λ) and s2 (π, λ),

we construct the coefficient Q(x) of the Dirac equation (1) using the well-known
procedure (see, for example, [1, 4]).
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