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Schur Stability Analysis of Families of Polynomials:
Legendre and Chebyshev Polynomials

G. Topcu

Abstract. In this paper, matrix families generated from Legendre and Chebyshev poly-
nomials, the stability analysis of these matrix families, continuity theorems used to obtain
interval matrices and extension of these intervals have been examined. The matrix fami-
lies were introduced with the central matrices A which are generated from the Legendre
and Chebyshev polynomials. The intervals which guarantee the Schur stability of the
matrix families were obtained by using continuity theorems. The obtained intervals were
extended with the algorithms in the literature. Afterwards, Legendre and Chebyshev
polynomials with interval coefficients were constructed. Finally, examples related to the
stability of the Legendre and Chebyshev polynomials were given.
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1. Introduction

The stability analysis has been one of the main research topics in applied
mathematics and control theory. In particular, the determination of the stabil-
ity of matrix or polynomial families remains a significant problem. In this paper,
Schur stable interval polynomial families have been obtained. Specifically, Legen-
dre, first-kind Chebyshev and second-kind Chebyshev polynomials were chosen
due to their structural properties. Although there exist many studies in the
literature on the Schur stability and on the orthogonal polynomials, this work
differs by combining these two topics and providing a new perspective through
continuity theorems [1, 3, 4, 6, 7, 9, 11, 16, 17].

Let us give the family of Schur stable matrices with SN [21, 22]. The eigen-
values of the matrix A lie in the unit disk if and only if A ∈ SN [1, 12]. On the
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other hand, this is also known as spectral criterion in the literature. The spectral
criterion can also be represented by the spectrum. σ(A) to be spectrum of the
matrix A, if it satisfies the condition σ(A) ⊂ Cs = {z | |z| < 1} then the matrix
A is said to be Schur stable [24]. In the literature, Schur stability problems are
usually determined using eigenvalues. However, it is well-known that eigenvalue
problem is an ill-conditioned problem for the non-symmetric matrices [7, 25]. Let
us consider an Ostrowski-type example, when small changes are made in the en-
tries of the given matrix, it can be observed that the eigenvalues vary significantly
[1, 20, 22]. For this reason, instead of using eigenvalues, it becomes more conve-
nient to use alternative parameters from the literature for the determination of
Schur stability [1, 4, 26, 12].

The theoretical foundation of Schur stability can also be expressed via the
discrete Lyapunov matrix equation A∗HA − H + I = 0, where H = H∗ > 0
denotes the Lyapunov matrix associated with the system matrix A [1, 7, 12, 18,
24]. If the positive definite solutionH exists, then the matrix A is said to be Schur
stable [1, 7, 23, 12]. However, the Lyapunov matrix does not provide information
about the quality of stability. Schur stability parameter

ω(A) = ∥H∥ > 1; H =
∞∑
k=0

(A∗)k Ak (1)

is used to quantify the quality of stability [1, 7, 9]. The quality of the Schur
stability improves as the parameter ω approaches 1 and deteriorates as it moves
away from 1.

In another part of this study, we focus on orthogonal polynomials, which con-
stitute a fundamental class of functions in mathematical analysis and numerical
stability. Orthogonal polynomials inherently possess several advantageous prop-
erties. In particular, analyzing these polynomials via their companion matrices
proves to be more practical and reliable. Here, we focus on the Legendre and
Chebyshev polynomials. Due to the intervals over which they are defined, making
observations regarding Schur stability becomes considerably more straightforward
[2, 10, 17, 19].

In this paper, the Schur stability analysis of the polynomial families cen-
tered on the Legendre and Chebyshev orthogonal polynomials were examined.
Specifically, the matrices generated from the Legendre and Chebyshev orthogo-
nal polynomials were used as the central matrix. In Section 2, the Legendre and
Chebyshev polynomials were introduced. In Section 3, matrix families centered
on the Legendre and Chebyshev polynomials were constructed. In Section 4,
Schur stability of the matrix families were discussed. First, the continuity theo-
rems related to Schur stability analysis were presented. Then, a new continuity
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theorem was introduced. Thus, Schur stability intervals for the new matrix fami-
lies were determined. In the Final Section, these intervals which preserving their
Schur stability properties were extended. For this purpose, existing algorithms
in the [21, 22] were modified. At the end of the paper, using the algorithm,
examples were given.

2. Legendre Polynomial and Chebyshev Polynomials

Orthogonal polynomials play a central role in approximation theory, spectral
methods and stability analysis of dynamical systems. Among these, the Legen-
dre and Chebyshev polynomials constitute three of these orthogonal polynomials
due to their elegant analytical properties and wide range of applications in nu-
merical analysis and control theory. In this section, the main characteristics of
the Legendre polynomial, Chebyshev polynomials of the first and second kinds
are briefly summarized and the Schur stability of these polynomials is discussed
[2, 10, 17, 19].

2.1. Legendre Polynomials

The Legendre polynomials Pn(x) form a well-known family of orthogonal poly-
nomials defined on [−1, 1]. They arise naturally as solutions to the Legendre
differential equation,

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (2)

An explicit representation of the n-th Legendre polynomial is given by Rodrigues’
formula:

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
. (3)

The Legendre polynomials satisfy the Cauchy difference equation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0(x) = 1, P1(x) = x. (4)

Several members of Legendre polynomials are

P2(x) =
1
2(3x

2 − 1), P3(x) =
1
2(5x

3 − 3x), P4(x) =
1
8(35x

4 − 30x2 + 3). (5)

2.2. Chebyshev Polynomials of the First Kind

The Chebyshev polynomials of the first kind, denoted by Tn(x), are defined
over the interval [−1, 1] by the trigonometric relation

Tn(x) = cos(n arccosx), x ∈ [−1, 1]. (6)
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The Chebyshev polynomials of the first kind satisfy the well-known Cauchy
difference equation

Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x. (7)

Several members of Chebyshev polynomials of the first kind are

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1. (8)

Their roots are distributed as

xk = cos

(
(2k − 1)π

2n

)
, k = 1, 2, . . . , n. (9)

2.3. Chebyshev Polynomials of the Second Kind

The Chebyshev polynomials of the second kind, denoted by Un(x), share
many structural similarities with Tn(x) but differ in their orthogonality proper-
ties. They are defined by

Un(x) =
sin

(
(n+ 1) arccosx

)
√
1− x2

, x ∈ [−1, 1]. (10)

Their Cauchy difference equation takes a form analogous to that of the first
kind:

Un+1(x) = 2xUn(x)− Un−1(x), U0(x) = 1, U1(x) = 2x. (11)

Several members of Chebyshev polynomials of the second kind are

U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1. (12)

The zeros of Un(x) are given by

xk = cos

(
kπ

n+ 1

)
, k = 1, 2, . . . , n. (13)

2.4. Schur Stabilty of Polynomials

Let us examine equations (9) and (13), which are given for the Chebyshev
polynomials of the first and second kinds, respectively. These equations define
the roots of the corresponding orthogonal polynomials.

For the Chebyshev polynomials of the first kind, an examination of their roots
yields

π

2
≤ (2k − 1)π

2n
< π, k = 1, 2, . . . , n. (14)
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Consequently, it follows that |xk| < 1, k = 1, 2, . . . , n. This result guarantees that
all roots of Chebyshev polynomials of the first kind lie strictly within the interval
(−1, 1).

Similarly, for the Chebyshev polynomials of the second kind, an analysis of
their roots leads to the same conclusion. Hence, the roots of the Chebyshev
polynomials of the second kind are also contained in the interval (−1, 1).

In contrast to the Chebyshev polynomials of the first and second kinds, there
is no simple closed-form trigonometric expression for the roots of the Legendre
polynomials. These roots are typically computed approximately using numerical
methods such as the Newton–Raphson method and exact expressions are gener-
ally unavailable. Nevertheless, it is well known that the roots of the Legendre
polynomials are also located within the interval (−1, 1). Indeed, the locations of
these roots are explicitly characterized in [17], Theorem 62.

Therefore, it is clear that the roots of the polynomials Pn(x), Tn(x), and
Un(x) all lie in the interval (−1, 1). As a result, these polynomials are inherently
Schur stable orthogonal polynomials due to their intrinsic structure.

3. Matrix Families Centered on the Legendre and Chebyshev
Polynomials

While Legendre and Chebyshev polynomials are primarily studied for their
orthogonality properties and their role in approximation theory, it is often in-
sightful to analyze them from an algebraic and matrix-theoretic perspective. In
particular, the concept of the companion matrix provides a direct connection
between polynomial equations and linear algebra: the roots of a polynomial cor-
respond to the eigenvalues of its associated companion matrix. This relationship
allows one to translate properties of orthogonal polynomials, such as the bound-
edness of their roots within the interval (−1, 1), into spectral characteristics of
matrices. In this section, after introducing the companion matrix, the matrix
families obtained from these companion matrices have been presented. Thus,
new matrix families centered on the Legendre and Chebyshev polynomials have
been constructed.

3.1. From Polynomials to Companion Matrices

Given a monic polynomial of degree n,

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, (15)
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its companion matrix Cp is defined in [12, 11, 8] as follows:

Cp =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1

 . (16)

The eigenvalues of the matrix Cp coincide exactly with the roots of p(x). In this
study, the polynomials p(x) are denoted by

• Pn(x) Legendre polynomials,

• Tn(x) Chebyshev polynomials of the first kind,

• Un(x) Chebyshev polynomials of the second kind.

Consequently, when p(x) is chosen as these polynomials, the companion matrix
inherits the spectral properties of the corresponding polynomial. Since all roots
of these polynomials lie strictly within the interval (−1, 1), the eigenvalues of
the companion matrix are contained within the unit disk, implying that such
matrices are Schur stable.

3.2. Matrix Families Centered on the Legendre and Chebyshev
Polynomials

Building upon this framework, matrix families centered on the Legendre and
Chebyshev polynomials were introduced. Let us consider the matrix family L,

L = L (A,B)= {A (r) = A+ rB | A,B ∈ Mn(C)} .

In this construction, the matrix A is taken as the companion matrix of the Leg-
endre and Chebyshev polynomials and the perturbation matrices B are defined
as combinations of the elementary matrices Eni, i ≤ n, then the following matrix
families are defined:

L|Pn
= L (A,B)|A=CPn

=

{
A (r) = CPn + rB | B =

n∑
i=1

δiEni

}
,

L|Tn
= L (A,B)|A=CTn

=

{
A (r) = CTn + rB | B =

n∑
i=1

δiEni

}
,

L|Un
= L (A,B)|A=CUn

=

{
A (r) = CUn + rB | B =

n∑
i=1

δiEni

}
.
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Here, the values δi defined as 0 or 1 and
∑n

i=1 δ
2
i ̸= 0 simultaneously. On the

other hand, Eni is a real matrix which the elements at position (n, i) are equal to
1 and the other elements are equal to 0. For the sake of brevity, the remainder
of the paper will use the notations L|Pn

, L|Tn
and L|Un

.

Remark 1. The reason for choosing the matrix B in the form of Eni is to
avoid disrupting the general structure of the companion matrix obtained from the
polynomials. Thus, with the perturbation matrix B, the new matrix is ensured to
conform to the companion matrix form.

4. Schur Stability of the Matrix Families

In this section, before giving the stability of the matrix families, present the
continuity theorems for Schur stability. These theorems exist in the literature are
determines the sensitivity of the Schur stability. Let us remember the family of
Schur stable matrices as SN = {A ∈ MN (C) | ω(A) < ∞}.

Theorem 1. Let A ∈ SN . If ∥B∥ <
√
∥A∥2 + 1

ω(A) − ∥A∥ then the matrix

A+B ∈ SN and
ω(A+B) ≤ ω(A)

1−(2∥A∥+∥B∥)∥B∥ω(A)

holds [5, 11].

Now, considering Theorem 1, let us give the following theorem obtained by
Topcu and Aydın.

Theorem 2. If A ∈ SN , B ∈ MN (C) and r ∈ IL = [r, r] then L (A,B) ⊂ SN ,

where −l = u = − ∥A∥
∥B∥ + 1

∥B∥

√
∥A∥2 + 1

ω(A) , l < r < r < u [20, 22].

Thanks to these continuity theorems, intervals preserving the Schur stability
of the given matrix families are obtained. It should be noted that the matrix A
is Schur stable and an extension preserving Schur stability has been constructed
by means of the perturbation matrix B.

On the other hand, when the matrix A is obtained from the Legendre and
Chebyshev polynomials for the matrix families, there is an important point to
emphasize. Due to the intrinsic structure of these polynomials, all of their roots
lie strictly within the interval (−1, 1). As a consequence, the eigenvalues of the
companion matrices associated with these polynomials are contained within the
unit disk, implying that the Legendre and Chebyshev polynomials are inherently
Schur stable. With the Theorem 2, we can conclude that the matrix families
L|Pn

, L|Tn
and L|Un

are Schur stable on the intervals IPn , ITn and IUn , respec-
tively.

Let us present the continuity theorem for the matrix families as follows:
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Theorem 3. If the matrix A is equal to one of these companion matrices

CPn , CTn and CUn and the matrix B is equal to
n∑

i=1
δiEni for the r values se-

lected from the intervals IPn , ITn and IUn then the matrix families L|Pn
, L|Tn

and L|Un
are the Schur stable, respectively.

Proof. Theorem 3 is obtained from Theorem 2. Therefore, the proof of
Theorem 3 is omitted. For further details, see [20, 22].

Example 1. Let us take the third-degree Legendre and Chebyshev polynomials
and the perturbation matrix B4 = E31 + E32, respectively. There exist seven
different alternatives for the matrix B. They are denoted as B1 = E31, B2 =
E32, B3 = E33, B5 = E31+E33, B6 = E32+E33 and B7 = E31+E32+E33. How-
ever, in this analysis, only the matrix B4 has been considered. Similar stability
intervals can be obtained for the other matrices B as well.

With the application of the continuity theorem which is Theorem 3 the follow-
ing Schur stability intervals are obtained for the matrix families L|Pn

, L|Tn
and

L|Un
, respectively:

IPn = (−0.0559, 0.0559) ,

ITn = (−0.0341, 0.0341) ,

IUn = (−0.0699, 0.0699) .

5. Extending the Stability Intervals and Obtaining the Interval
Polynomials Which Legendre/Chebyshev Centered

In the last example, the obtained intervals preserve the Schur stability of the
given matrix families. However, upon further analysis, it has been observed that
there also exist points outside these intervals that ensure the Schur stability.

To include these points into the obtained intervals, algorithms have been given
by Topcu and Aydın [20, 22]. By means of these algorithms, extended intervals
are obtained for the given matrix families while preserving the Schur stability. In
this study, these algorithms are modified. Before presenting the algorithm, let us
specify the step size, which is determined by Theorem 2 as follows:

rk = −∥Ak∥
∥B∥

+
1

∥B∥

√
∥Ak∥2 +

1

ω(Ak)
. (17)

Algorithm for the Schur Stability
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1. Input; Pn/Tn/Un (type of polynomial),

B =
n∑

i=1
δiEni , r∗ (stopping parameter).

2. Create the companion matrix; A := CPn/CTn/CUn .

3. Calculate; ∥A∥ , ∥B∥ ,
ω(A) from equation (1),

u from Theorem 2.

4. If u < r∗ then write “The interval cannot be extended based on the available
data.” and finish the algorithm.

5. Data renewal;

A0 := A, r0 := u, u0 := r0, l0 := −r0, k =: 0.

For Lower Bound

6. Calculate;

Ak+1 = Ak − rkB,

∥Ak+1∥,
ω(Ak+1),

rk+1 from equation (17).

7. If rk+1 ≥ r∗ then

calculate lk+1 = lk − rk+1,

take k := k + 1,

go to the (6). step.

8. Take n := k and write the lower
bound of the interval as le = ln.

For Upper Bound

6. Calculate;

Ak+1 = Ak + rkB,

∥Ak+1∥,
ω(Ak+1),

rk+1 from equation (17).

7. If rk+1 ≥ r∗ then

calculate uk+1 = uk + rk+1,

take k := k + 1,

go to the (6). step.

8. Take m := k and write the up-
per bound of interval as ue =
um.

9. Construct;

Ie
Pn

/Ie
Tn
/Ie

Un
= [le, ue],

Ce
Pn

/Ce
Tn
/Ce

Un
= A+ [le, ue]B.

10. Generate the Legendre/Chebyshev-centered interval polynomials;

P e
n(x)/T

e
n(x)/U

e
n(x)
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Let us examine the given algorithm. By taking the Legendre/Chebyshev poly-
nomials as the central polynomials, the Schur stable interval polynomial families
are obtained. Here, the matrix A corresponds to the Legendre/Chebyshev poly-
nomials of the degree specified by the user, while the matrix B is provided by the
user as well. However, a certain restriction is imposed on the matrix B in order
not to disrupt the structure of the companion matrix. On the other hand, the
parameter r∗ is defined by the user as the practical parameter for the step size
[13, 14, 15]. With this stopping criterion, the algorithm yields more efficient and
reliable results.

Once executed, the algorithm performs the necessary computations in
accordance with the user-defined inputs and yields the extended interval
Ie
Pn

/Ie
Tn
/Ie

Un
= [le, ue] that preserves the Schur stability. At this stage, an in-

terval companion matrix is constructed using the interval Ie
Pn

/Ie
Tn
/Ie

Un
. Finally,

by means of the companion matrix, a Legendre/Chebyshev-centered Schur stable
interval polynomial family is generated.

The descriptions of the symbols used were given below:
Pn : Legendre polynomials of degree n.

Tn : Chebyshev polynomials of first kind of degree n.

Un : Chebyshev polynomials of second kind of degree n.

kIPn/kITn/kIUn : Schur stability intervals of the polynomials
Pn/Tn/Un for the perturbation matrix Bk.

kIe
Pn

/kIe
Tn
/kIe

Un
: Extended Schur stability intervals.

kCe
Pn

/kCe
Tn
/kCe

Un
: Interval companion matrices constructed from the

interval kIe
Pn

/kIe
Tn
/kIe

Un
.

kP
e
n(x)/kT

e
n(x)/kU

e
n(x) : Legendre / Chebyshev (first kind) / Chebyshev

(second kind)-centered extended Schur stable inter-
val polynomials.

With the aid of the algorithm for the Schur stability, the following theorem
is obtained.

Theorem 4. If the matrix A is equal to one of these companion matrices

CPn , CTn and CUn and the matrix B is equal to
n∑

i=1
δiEni for the r values se-

lected from the intervals Ie
Pn

, Ie
Tn

and Ie
Un

then the matrix families L|Pn
, L|Tn

and L|Un
are the Schur stable, respectively.

Proof. This theorem is presented as a result of the algorithm. The algorithm is
constructed based on the continuity theorems, which are Theorem 2 and Theorem
3. Therefore, the obtained intervals guarantee Schur stability.
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Example 2. Let us take the 3rd degree Legendre and Chebyshev polynomials

P3(x) = 1
2(5x

3 − 3x) −→ CP3 =

0 1 0
0 0 1
0 3

5 0


T3(x) = 4x3 − 3x −→ CT3 =

0 1 0
0 0 1
0 3

4 0


U3(x) = 8x3 − 4x −→ CU3 =

0 1 0
0 0 1
0 1

2 0


and the perturbation matrices B as follows,

B1 = E31, B2 = E32, B3 = E33, B4 = E31 + E32,

B5 = E31 + E33, B6 = E32 + E33, B7 = E31 + E32 + E33

Let us examine the Table 1. The matrices A, B and the parameter r∗ are
the input elements selected by the users. l and u are the lower and upper bounds
which are calculated with the continuity theorems, respectively. le and ue are
the extended lower and upper bounds obtained by the Algorithm for the Schur
Stability. N l and Nu indicate step number of the algorithm stopped for lower and
upper bounds, respectively. It should be noted here that the matrix B has been
examined under seven different cases. Beyond these options, no other choice of
the matrix B is admissible. The computations were also carried out for all seven
perturbation matrices B. However, due to the similarity of the results, only the
outcomes corresponding to B1, B4 and B7 are presented in the Table 1.

To illustrate, a comparison with Example 1 shows that the extended intervals
for r∗ = 0.001 were obtained as follows:

• For the matrices CP3 and B4;

– Lower bound is le = −0.8573 with 20 steps and upper bound is ue =
0.1979 with 10 steps.

– Extended interval is 4Ie
P3

= [−0.8573, 0.1979].

– Interval companion matrix for the matrix family 4Le|P3
is

4Ce
P3

=

 0 1 0
0 0 1

[−0.8573, 0.1979] [−0.2573, 0.7979] 0

.

– Legendre-centered Schur stable interval polynomial is

4P
e
3 (x) = x3 + [−0.7979, 0.2573]x+ [−0.1979, 0.8573].



62 G. Topcu

A B r∗ l le N l u ue Nu

CP3

B1
0.01

-0.079
-0.3684 8

0.079
0.3684 8

0.001 -0.3977 15 0.3977 15

B4
0.01

-0.0559
-0.8398 15

0.0559
0.175 5

0.001 -0.8573 20 0.1979 10

B7
0.01

-0.0456
-0.3562 11

0.0456
0.1195 4

0.001 -0.3966 21 0.1317 7

CT3

B1
0.01

-0.0482
-0.2167 7

0.0482
0.2167 7

0.001 -0.2468 14 0.2468 14

B4
0.01

-0.0341
-0.8898 20

0.0341
0.0977 4

0.001 -0.9121 26 0.1233 10

B7
0.01

-0.0278
-0.2075 10

0.0278
0.0646 3

0.001 -0.2455 20 0.0818 7

CU3

B1
0.01

-0.0988
-0.4755 9

0.0988
0.4755 9

0.001 -0.4976 15 0.4976 15

B4
0.01

-0.0699
-0.7986 13

0.0699
0.2323 6

0.001 -0.8204 19 0.2478 10

B7
0.01

-0.0571
-0.459 12

0.0571
0.1509 4

0.001 -0.4958 21 0.1652 7

Table 1: The values l, le, u, ue for the data A,B, r∗

• For the matrices CT3 and B4;

– Lower bound is le = −0.9121 with 26 steps and upper bound is ue =
0.1233 with 10 steps.

– Extended interval is 4Ie
T3

= [−0.9121, 0.1233].

– Interval companion matrix for the matrix family 4Le|T3
is

4Ce
T3

=

 0 1 0
0 0 1

[−0.9121, 0.1233] [−0.1621, 0.8733] 0

.

– Chebyshev of first kind-centered Schur stable interval polynomial is

4T
e
3 (x) = x3 + [−0.8733, 0.1621]x+ [−0.1233, 0.9121].

• For the matrices CU3 and B4;

– Lower bound is le = −0.8204 with 19 steps and upper bound is ue =
0.2478 with 10 steps.

– Extended interval is 4Ie
U3

= [−0.8204, 0.2478].

– Interval companion matrix for the matrix family 4Le|U3
is
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4Ce
U3

=

 0 1 0
0 0 1

[−0.8204, 0.2478] [−0.3204, 0.7478] 0

.

– Chebyshev of second kind-centered Schur stable interval polynomial is

4U
e
3 (x) = x3 + [−0.7478, 0.3204]x+ [−0.2478, 0.8204].

Note. Python has been used for the computations. The development of the
Python procedure was supported through the use of artificial intelligence.

6. Conclusion

The main objective of this study is to obtain the Legendre/Chebyshev-
centered Schur stable interval polynomial families. Accordingly, the following
results have been obtained:

• Using the companion matrix, Legendre/Chebyshev-centered matrix families
were constructed.

• With the aid of the continuity theorems, the intervals IPn , ITn and IUn that
ensure the Schur stability of the matrix families L|Pn

, L|Tn
and L|Un

were
determined, respectively.

• The intervals IPn , ITn and IUn were extended through the algorithm while
preserving the Schur stability property.

• The companion matrices Ce
Pn

, Ce
Tn

and Ce
Un

corresponding to the extended
intervals Ie

Pn
, Ie

Tn
and Ie

Un
were constructed, respectively.

• A Legendre/Chebyshev-centered Schur stable interval polynomial families
P e
n(x), T

e
n(x) and U e

n(x) were obtained.

For illustrative purposes, examples based on third-degree Legendre and
Chebyshev polynomials are presented. Moreover, the algorithms can also be
applied to higher-degree Legendre and Chebyshev polynomials.

On the other hand, this study is based on the continuity theorems. Thus, the
Legendre and Chebyshev polynomials have been taken as the central polynomials
and the stability intervals have been extended with the continuity theorems while
preserving its Schur stability property. Therefore, the study contributes a novel
perspective to the literature.

This study provides a foundation for extending the proposed approach to
higher-degree polynomials. In addition, it opens the way for constructing new
polynomial-based matrix families with guaranteed Schur stability.
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