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Algebraic Points of Degree l ≥ 2 over Q on the
Affine Curve X : n2 = 3(m5 − 1)

E. H. Sow, O. Sall

Abstract. We determine the set of algebraic points of degree degree l ≥ 2 over Q on
the curve X given by the affine equation n2 = 3(m5 − 1) and this result extends a result
of Siksek who described in [5] the set of algebraic points of degree 1 on this curve.
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1. Introduction and main result

Let X be a smooth algebraic curve of genus 2 defined over a numbers field K.
We note by X (K) the set of points of X with coordinates in K.
We denote by J the jacobian of X and by j(P ) the class [T −∞] of T −∞, that is
to say that j is the Jacobian diving X −→ J(Q). The Mordell-Weil group J(Q)
of rational points of the jacobian is a finite set (refer to [5]).
For a divisor D on X , we note L (D) the Q-vector space of rational functions F
defined on Q such that F = 0 or div (F ) ≥ −D; l (D) designates Q-dimension of
L (D). The goal is to determine the set of algebraic points of given degree l ≥ 2
over Q on the curve C given by the affine equation

n2 = 3(m5 − 1) (1)

From [5] we have T = (1, 0) et ∞ the rational points over Q on this curve.
Our main result is given by the following theorem:
Theorem. The set of algebraic points of given degree l ≥ 2 over Q on the curve
X is given by: ⋃

[K:Q]≤l

X (K) = V0 ∪ V1
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with
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where
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2. Auxiliary results

In [5], the Mordell-Weil group J(Q) of X is isomorph to Z/2Z and X is a
hyperelliptic curve of genus g = 2. Let m, n be two rational functions on Q
defined as follow:

m(M,N,Z) =
M

Z
et n(M,N,Z) =

N

Z

The projective equation of X is

M : N2Z3 = 3(M5 − Z5) (2)

We denote by η1 = ei
Π
2 and let’s put Ak = (0,

√
3η2k+1

1 ) for k ∈ {0, 1}.
We denote by η2 = ei

Π
5 and let’s put Bk = (η2k2 , 0) for k ∈ {0, 1, 2, 3, 4}.

Let us designate by D.X the intersection cycle of algebraic curve D defined on
Q and X .
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Lemma 1.

• div(m− 1) = 2T − 2∞
• div(n) = B0 +B1 +B2 +B3 +B4 − 5∞
• div(m) = A0 +A1 − 2∞

Proof X : N2Z3 = 3(M5 − Z5) (projective equation)

• div(m− 1) = (M − Z = 0).X − (Z = 0).X
For M = Z, we have N2 = 0 with Z = 1 or Z3 = 0 with N = 1. We obtain
the point T = (1, 0, 1) with multiplicity 2 and the point ∞ = (0, 1, 0) with
multiplicity 3. Hence (M − Z = 0).X = 2T + 3∞ (∗).
Even if Z = 0, then M5 = 0; and for N = 1, we have the point ∞ = (0, 1, 0)
with multiplicity 5. Hence (Z = 0).X = 5∞ (∗∗).
The relations (∗) and (∗∗) implies that div(m− 1) = 2T − 2∞.

• Similarly we show that div(n) = B0+B1+B2+B3+B4−5∞ and div(m) =
A0 +A1 − 2∞

Lemma 2. [6]

• L (∞) = ⟨1⟩
• L (2∞) = ⟨1, m⟩ = L (3∞)

• L (4∞) =
〈
1, m, m2

〉
• L (5∞) =

〈
1, m, m2, n

〉
• L (6∞) =

〈
1, m, m2, n, m3

〉
Lemma 3. [6]
A Q-base of L (r∞) is given by

Br =
{
mi | i ∈ N and i ≤ r

2

}
∪

{
mjn | j ∈ N and j ≤ r − 5

2

}
Lemma 4. [5] J(Q) ∼= Z/2Z = ⟨[T −∞]⟩ = {a [T −∞] , a ∈ {0, 1}}.

3. Proof of theorem

Given S ∈ X (Q̄) with [Q[S] : Q] = l. The work of Siksek in [5] allows us to
assume that l ≥ 2. Note that S1, S2, . . . , Sl are the Galois conjugates of S. Let’s
work with t = [S1 + S2 + · · ·+ Sl − l∞] ∈ J(Q), according to Lemma 4 we have
t = a [T −∞] , 0 ≤ a ≤ 1. So we have [S1 + S2 + · · ·+ Sl − l∞] = a [T −∞].
For a = 0, we have [S1 + S2 + · · · + Sl − l∞] = 0; then there exist a function F
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with coefficient in Q such that div(F ) = S1+S2+ · · ·+Sl− l∞, then F ∈ L(l∞)
and according to Lemma 3 we have

F (m,n) =

∑
i≤ l
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aim
i
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n
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j

 . (3)

For the points Si, we have∑
i≤ l
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 = 0. (4)
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∑
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j
and the relation n2 = 3(m5 − 1) gives the equation

(E0) :
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We find a family of points

V0 =



m,−

∑
i≤ l
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aim
i

∑
j≤ l−5

2
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j

 | ai, bj ∈ Q and m root of the equation (E0)

 .

For a = 1, we have [S1 + S2 + · · ·+ Sl − l∞] = [T −∞] = − [T −∞]; then there
exist a function F with coefficient in Q such that div(F ) = S1 + S2 + · · ·+ Sl +
T − (l + 1)∞, then F ∈ L((l + 1)∞) and according to Lemma 3 we have

F (m,n) =

 ∑
i≤ l+1

2

aim
i

+

n
∑

j≤ l−4
2

bjm
j

 . (5)

We have F (T ) = 0 implies the relation∑
i≤ l+1

2

ai = 0
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.
For the points Si, we have ∑
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 = 0. (6)

hence n = −

∑
i≤ l+1
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j
and the relation n2 = 3(m5 − 1) gives the equation

(E1) :

 ∑
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We find a family of points

V1 =



m,−
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 | ai, bj ∈ Q with
∑
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